New Classes of Permutation Quadrinomials Over Fq3

Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2024/08/01, Vol.E107.A(8), pp.1205-1211
Hauptverfasser: CHEN, Changhui, KAN, Haibin, PENG, Jie, WANG, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1211
container_issue 8
container_start_page 1205
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E107.A
creator CHEN, Changhui
KAN, Haibin
PENG, Jie
WANG, Li
description Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.
doi_str_mv 10.1587/transfun.2023EAP1113
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104752103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104752103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2713-9df6e1fdd522f3a0db6103161d1b595df72139ad363ae059e547f7b070bfedec3</originalsourceid><addsrcrecordid>eNpNkEtOwzAQhi0EEqVwAxaRWKd47DhOllVVHlJFC4K15cRjSJVHaycg7sGWo3AnjkBQaelqRqPv-0f6CTkHOgKRyMvW6drbrh4xyvh0vAAAfkAGICMRAufykAxoCnGYCJockxPvl5RCwiAakOgO34JJqb1HHzQ2WKCrula3RVMH9502rqibqtClD-av6ILvz4-vNT8lR7Y_4dnfHJKnq-nj5Cacza9vJ-NZmDMJPEyNjRGsMYIxyzU1WQyUQwwGMpEKYyUDnmrDY66RihRFJK3MqKSZRYM5H5KLTe7KNesOfauWTefq_qXiQCMpWJ_XU9GGyl3jvUOrVq6otHtXQNVvP2rbj9rrp9ceNtrSt_oZd5J2bZGX-C9NgUo1Vsl22QvZwfmLdgpr_gNwwHiO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104752103</pqid></control><display><type>article</type><title>New Classes of Permutation Quadrinomials Over Fq3</title><source>J-STAGE Free</source><creator>CHEN, Changhui ; KAN, Haibin ; PENG, Jie ; WANG, Li</creator><creatorcontrib>CHEN, Changhui ; KAN, Haibin ; PENG, Jie ; WANG, Li</creatorcontrib><description>Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2023EAP1113</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Combinatorial analysis ; cryptography ; finite field ; permutation quadrinomial ; Permutations ; Polynomials ; quasi-multiplicative equivalence ; resultant</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024/08/01, Vol.E107.A(8), pp.1205-1211</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2713-9df6e1fdd522f3a0db6103161d1b595df72139ad363ae059e547f7b070bfedec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>CHEN, Changhui</creatorcontrib><creatorcontrib>KAN, Haibin</creatorcontrib><creatorcontrib>PENG, Jie</creatorcontrib><creatorcontrib>WANG, Li</creatorcontrib><title>New Classes of Permutation Quadrinomials Over Fq3</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.</description><subject>Combinatorial analysis</subject><subject>cryptography</subject><subject>finite field</subject><subject>permutation quadrinomial</subject><subject>Permutations</subject><subject>Polynomials</subject><subject>quasi-multiplicative equivalence</subject><subject>resultant</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtOwzAQhi0EEqVwAxaRWKd47DhOllVVHlJFC4K15cRjSJVHaycg7sGWo3AnjkBQaelqRqPv-0f6CTkHOgKRyMvW6drbrh4xyvh0vAAAfkAGICMRAufykAxoCnGYCJockxPvl5RCwiAakOgO34JJqb1HHzQ2WKCrula3RVMH9502rqibqtClD-av6ILvz4-vNT8lR7Y_4dnfHJKnq-nj5Cacza9vJ-NZmDMJPEyNjRGsMYIxyzU1WQyUQwwGMpEKYyUDnmrDY66RihRFJK3MqKSZRYM5H5KLTe7KNesOfauWTefq_qXiQCMpWJ_XU9GGyl3jvUOrVq6otHtXQNVvP2rbj9rrp9ceNtrSt_oZd5J2bZGX-C9NgUo1Vsl22QvZwfmLdgpr_gNwwHiO</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>CHEN, Changhui</creator><creator>KAN, Haibin</creator><creator>PENG, Jie</creator><creator>WANG, Li</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240801</creationdate><title>New Classes of Permutation Quadrinomials Over Fq3</title><author>CHEN, Changhui ; KAN, Haibin ; PENG, Jie ; WANG, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2713-9df6e1fdd522f3a0db6103161d1b595df72139ad363ae059e547f7b070bfedec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>cryptography</topic><topic>finite field</topic><topic>permutation quadrinomial</topic><topic>Permutations</topic><topic>Polynomials</topic><topic>quasi-multiplicative equivalence</topic><topic>resultant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, Changhui</creatorcontrib><creatorcontrib>KAN, Haibin</creatorcontrib><creatorcontrib>PENG, Jie</creatorcontrib><creatorcontrib>WANG, Li</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, Changhui</au><au>KAN, Haibin</au><au>PENG, Jie</au><au>WANG, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Classes of Permutation Quadrinomials Over Fq3</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>E107.A</volume><issue>8</issue><spage>1205</spage><epage>1211</epage><pages>1205-1211</pages><artnum>2023EAP1113</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2023EAP1113</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024/08/01, Vol.E107.A(8), pp.1205-1211
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_journals_3104752103
source J-STAGE Free
subjects Combinatorial analysis
cryptography
finite field
permutation quadrinomial
Permutations
Polynomials
quasi-multiplicative equivalence
resultant
title New Classes of Permutation Quadrinomials Over Fq3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Classes%20of%20Permutation%20Quadrinomials%20Over%20Fq3&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=CHEN,%20Changhui&rft.date=2024-08-01&rft.volume=E107.A&rft.issue=8&rft.spage=1205&rft.epage=1211&rft.pages=1205-1211&rft.artnum=2023EAP1113&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2023EAP1113&rft_dat=%3Cproquest_cross%3E3104752103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104752103&rft_id=info:pmid/&rfr_iscdi=true