New Classes of Permutation Quadrinomials Over Fq3
Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a pr...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2024/08/01, Vol.E107.A(8), pp.1205-1211 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1211 |
---|---|
container_issue | 8 |
container_start_page | 1205 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | E107.A |
creator | CHEN, Changhui KAN, Haibin PENG, Jie WANG, Li |
description | Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q. |
doi_str_mv | 10.1587/transfun.2023EAP1113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104752103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104752103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2713-9df6e1fdd522f3a0db6103161d1b595df72139ad363ae059e547f7b070bfedec3</originalsourceid><addsrcrecordid>eNpNkEtOwzAQhi0EEqVwAxaRWKd47DhOllVVHlJFC4K15cRjSJVHaycg7sGWo3AnjkBQaelqRqPv-0f6CTkHOgKRyMvW6drbrh4xyvh0vAAAfkAGICMRAufykAxoCnGYCJockxPvl5RCwiAakOgO34JJqb1HHzQ2WKCrula3RVMH9502rqibqtClD-av6ILvz4-vNT8lR7Y_4dnfHJKnq-nj5Cacza9vJ-NZmDMJPEyNjRGsMYIxyzU1WQyUQwwGMpEKYyUDnmrDY66RihRFJK3MqKSZRYM5H5KLTe7KNesOfauWTefq_qXiQCMpWJ_XU9GGyl3jvUOrVq6otHtXQNVvP2rbj9rrp9ceNtrSt_oZd5J2bZGX-C9NgUo1Vsl22QvZwfmLdgpr_gNwwHiO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104752103</pqid></control><display><type>article</type><title>New Classes of Permutation Quadrinomials Over Fq3</title><source>J-STAGE Free</source><creator>CHEN, Changhui ; KAN, Haibin ; PENG, Jie ; WANG, Li</creator><creatorcontrib>CHEN, Changhui ; KAN, Haibin ; PENG, Jie ; WANG, Li</creatorcontrib><description>Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2023EAP1113</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Combinatorial analysis ; cryptography ; finite field ; permutation quadrinomial ; Permutations ; Polynomials ; quasi-multiplicative equivalence ; resultant</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024/08/01, Vol.E107.A(8), pp.1205-1211</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2713-9df6e1fdd522f3a0db6103161d1b595df72139ad363ae059e547f7b070bfedec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>CHEN, Changhui</creatorcontrib><creatorcontrib>KAN, Haibin</creatorcontrib><creatorcontrib>PENG, Jie</creatorcontrib><creatorcontrib>WANG, Li</creatorcontrib><title>New Classes of Permutation Quadrinomials Over Fq3</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.</description><subject>Combinatorial analysis</subject><subject>cryptography</subject><subject>finite field</subject><subject>permutation quadrinomial</subject><subject>Permutations</subject><subject>Polynomials</subject><subject>quasi-multiplicative equivalence</subject><subject>resultant</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtOwzAQhi0EEqVwAxaRWKd47DhOllVVHlJFC4K15cRjSJVHaycg7sGWo3AnjkBQaelqRqPv-0f6CTkHOgKRyMvW6drbrh4xyvh0vAAAfkAGICMRAufykAxoCnGYCJockxPvl5RCwiAakOgO34JJqb1HHzQ2WKCrula3RVMH9502rqibqtClD-av6ILvz4-vNT8lR7Y_4dnfHJKnq-nj5Cacza9vJ-NZmDMJPEyNjRGsMYIxyzU1WQyUQwwGMpEKYyUDnmrDY66RihRFJK3MqKSZRYM5H5KLTe7KNesOfauWTefq_qXiQCMpWJ_XU9GGyl3jvUOrVq6otHtXQNVvP2rbj9rrp9ceNtrSt_oZd5J2bZGX-C9NgUo1Vsl22QvZwfmLdgpr_gNwwHiO</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>CHEN, Changhui</creator><creator>KAN, Haibin</creator><creator>PENG, Jie</creator><creator>WANG, Li</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240801</creationdate><title>New Classes of Permutation Quadrinomials Over Fq3</title><author>CHEN, Changhui ; KAN, Haibin ; PENG, Jie ; WANG, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2713-9df6e1fdd522f3a0db6103161d1b595df72139ad363ae059e547f7b070bfedec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>cryptography</topic><topic>finite field</topic><topic>permutation quadrinomial</topic><topic>Permutations</topic><topic>Polynomials</topic><topic>quasi-multiplicative equivalence</topic><topic>resultant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, Changhui</creatorcontrib><creatorcontrib>KAN, Haibin</creatorcontrib><creatorcontrib>PENG, Jie</creatorcontrib><creatorcontrib>WANG, Li</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, Changhui</au><au>KAN, Haibin</au><au>PENG, Jie</au><au>WANG, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Classes of Permutation Quadrinomials Over Fq3</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>E107.A</volume><issue>8</issue><spage>1205</spage><epage>1211</epage><pages>1205-1211</pages><artnum>2023EAP1113</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over Fq3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2023EAP1113</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024/08/01, Vol.E107.A(8), pp.1205-1211 |
issn | 0916-8508 1745-1337 |
language | eng |
recordid | cdi_proquest_journals_3104752103 |
source | J-STAGE Free |
subjects | Combinatorial analysis cryptography finite field permutation quadrinomial Permutations Polynomials quasi-multiplicative equivalence resultant |
title | New Classes of Permutation Quadrinomials Over Fq3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Classes%20of%20Permutation%20Quadrinomials%20Over%20Fq3&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=CHEN,%20Changhui&rft.date=2024-08-01&rft.volume=E107.A&rft.issue=8&rft.spage=1205&rft.epage=1211&rft.pages=1205-1211&rft.artnum=2023EAP1113&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2023EAP1113&rft_dat=%3Cproquest_cross%3E3104752103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104752103&rft_id=info:pmid/&rfr_iscdi=true |