Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant
Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2024-11, Vol.18 (11), p.8293-8301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8301 |
---|---|
container_issue | 11 |
container_start_page | 8293 |
container_title | Signal, image and video processing |
container_volume | 18 |
creator | Guan, Yunhe Wang, Yan Shen, Luping Qian, Guobing |
description | Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input signals in non-Gaussian noises. Nevertheless, the estimation accuracy of MCCC-APA is limited. In this paper, we introduce the complex kernel risk-sensitive loss (CKRSL) as the cost function to integrate with APA, and then propose the widely linear complex kernel risk-sensitive loss affine projection algorithm (WL-CKRSL-APA) to deal well with the colored signals in non-Gaussian noises. To strike a balance between the convergence rate and filtering accuracy, we utilize a proportional coefficient and interval updating strategy to obtain an improved filtering performance. To validate its effectiveness, we conduct simulation experiments through system identification and stereophonic acoustic echo cancellation (SAEC). |
doi_str_mv | 10.1007/s11760-024-03472-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104476138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104476138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7087e7869f798155ec934b9acebb2c0af64cf4931d644f03c260571c7cc0698f3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2C3gi8YwOC4Xdo2n8lzTxovFiQiiFSrtlK9DG_faia_TmXGYOvzfz5iF0TuGSAsirRKkUQKDiBBiXFemP0IjWghEqKT3-nYGdoklKayjFKlmLeoReX_zStj1ufbA6YtNtd639wBsbg21x9GlDkg3JZ3-wuO1Swtq5wuJd7NbWZN8FrNtVF31-22IdltjnhA86eh3yGTpxuk128tPH6Pn25ml2T-aPdw-z6zkxFUAmEmppi53Gyaam06k1DeOLRhu7WFQGtBPcON4wuhScO2CmEjCV1EhjQDS1Y2N0Mewtpt73NmW17vYxlJOKUeBcCsrqQlUDZWL5I1qndtFvdewVBfUVpBqCVCVI9R2k6ouIDaJU4LCy8W_1P6pPhvh3Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104476138</pqid></control><display><type>article</type><title>Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant</title><source>SpringerNature Journals</source><creator>Guan, Yunhe ; Wang, Yan ; Shen, Luping ; Qian, Guobing</creator><creatorcontrib>Guan, Yunhe ; Wang, Yan ; Shen, Luping ; Qian, Guobing</creatorcontrib><description>Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input signals in non-Gaussian noises. Nevertheless, the estimation accuracy of MCCC-APA is limited. In this paper, we introduce the complex kernel risk-sensitive loss (CKRSL) as the cost function to integrate with APA, and then propose the widely linear complex kernel risk-sensitive loss affine projection algorithm (WL-CKRSL-APA) to deal well with the colored signals in non-Gaussian noises. To strike a balance between the convergence rate and filtering accuracy, we utilize a proportional coefficient and interval updating strategy to obtain an improved filtering performance. To validate its effectiveness, we conduct simulation experiments through system identification and stereophonic acoustic echo cancellation (SAEC).</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-024-03472-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Cost function ; Filtration ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Risk ; Signal,Image and Speech Processing ; System identification ; Vision</subject><ispartof>Signal, image and video processing, 2024-11, Vol.18 (11), p.8293-8301</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7087e7869f798155ec934b9acebb2c0af64cf4931d644f03c260571c7cc0698f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-024-03472-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-024-03472-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Guan, Yunhe</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Shen, Luping</creatorcontrib><creatorcontrib>Qian, Guobing</creatorcontrib><title>Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input signals in non-Gaussian noises. Nevertheless, the estimation accuracy of MCCC-APA is limited. In this paper, we introduce the complex kernel risk-sensitive loss (CKRSL) as the cost function to integrate with APA, and then propose the widely linear complex kernel risk-sensitive loss affine projection algorithm (WL-CKRSL-APA) to deal well with the colored signals in non-Gaussian noises. To strike a balance between the convergence rate and filtering accuracy, we utilize a proportional coefficient and interval updating strategy to obtain an improved filtering performance. To validate its effectiveness, we conduct simulation experiments through system identification and stereophonic acoustic echo cancellation (SAEC).</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Cost function</subject><subject>Filtration</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Risk</subject><subject>Signal,Image and Speech Processing</subject><subject>System identification</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2C3gi8YwOC4Xdo2n8lzTxovFiQiiFSrtlK9DG_faia_TmXGYOvzfz5iF0TuGSAsirRKkUQKDiBBiXFemP0IjWghEqKT3-nYGdoklKayjFKlmLeoReX_zStj1ufbA6YtNtd639wBsbg21x9GlDkg3JZ3-wuO1Swtq5wuJd7NbWZN8FrNtVF31-22IdltjnhA86eh3yGTpxuk128tPH6Pn25ml2T-aPdw-z6zkxFUAmEmppi53Gyaam06k1DeOLRhu7WFQGtBPcON4wuhScO2CmEjCV1EhjQDS1Y2N0Mewtpt73NmW17vYxlJOKUeBcCsrqQlUDZWL5I1qndtFvdewVBfUVpBqCVCVI9R2k6ouIDaJU4LCy8W_1P6pPhvh3Lw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Guan, Yunhe</creator><creator>Wang, Yan</creator><creator>Shen, Luping</creator><creator>Qian, Guobing</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant</title><author>Guan, Yunhe ; Wang, Yan ; Shen, Luping ; Qian, Guobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7087e7869f798155ec934b9acebb2c0af64cf4931d644f03c260571c7cc0698f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Cost function</topic><topic>Filtration</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Risk</topic><topic>Signal,Image and Speech Processing</topic><topic>System identification</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Yunhe</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Shen, Luping</creatorcontrib><creatorcontrib>Qian, Guobing</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Yunhe</au><au>Wang, Yan</au><au>Shen, Luping</au><au>Qian, Guobing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>18</volume><issue>11</issue><spage>8293</spage><epage>8301</epage><pages>8293-8301</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input signals in non-Gaussian noises. Nevertheless, the estimation accuracy of MCCC-APA is limited. In this paper, we introduce the complex kernel risk-sensitive loss (CKRSL) as the cost function to integrate with APA, and then propose the widely linear complex kernel risk-sensitive loss affine projection algorithm (WL-CKRSL-APA) to deal well with the colored signals in non-Gaussian noises. To strike a balance between the convergence rate and filtering accuracy, we utilize a proportional coefficient and interval updating strategy to obtain an improved filtering performance. To validate its effectiveness, we conduct simulation experiments through system identification and stereophonic acoustic echo cancellation (SAEC).</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-024-03472-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2024-11, Vol.18 (11), p.8293-8301 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_3104476138 |
source | SpringerNature Journals |
subjects | Algorithms Computer Imaging Computer Science Cost function Filtration Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Risk Signal,Image and Speech Processing System identification Vision |
title | Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Widely%20linear%20complex%20kernel%20risk-sensitive%20loss%20affine%20projection%20algorithm%20and%20its%20variant&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Guan,%20Yunhe&rft.date=2024-11-01&rft.volume=18&rft.issue=11&rft.spage=8293&rft.epage=8301&rft.pages=8293-8301&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-024-03472-y&rft_dat=%3Cproquest_cross%3E3104476138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104476138&rft_id=info:pmid/&rfr_iscdi=true |