Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant

Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2024-11, Vol.18 (11), p.8293-8301
Hauptverfasser: Guan, Yunhe, Wang, Yan, Shen, Luping, Qian, Guobing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8301
container_issue 11
container_start_page 8293
container_title Signal, image and video processing
container_volume 18
creator Guan, Yunhe
Wang, Yan
Shen, Luping
Qian, Guobing
description Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input signals in non-Gaussian noises. Nevertheless, the estimation accuracy of MCCC-APA is limited. In this paper, we introduce the complex kernel risk-sensitive loss (CKRSL) as the cost function to integrate with APA, and then propose the widely linear complex kernel risk-sensitive loss affine projection algorithm (WL-CKRSL-APA) to deal well with the colored signals in non-Gaussian noises. To strike a balance between the convergence rate and filtering accuracy, we utilize a proportional coefficient and interval updating strategy to obtain an improved filtering performance. To validate its effectiveness, we conduct simulation experiments through system identification and stereophonic acoustic echo cancellation (SAEC).
doi_str_mv 10.1007/s11760-024-03472-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104476138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104476138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7087e7869f798155ec934b9acebb2c0af64cf4931d644f03c260571c7cc0698f3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2C3gi8YwOC4Xdo2n8lzTxovFiQiiFSrtlK9DG_faia_TmXGYOvzfz5iF0TuGSAsirRKkUQKDiBBiXFemP0IjWghEqKT3-nYGdoklKayjFKlmLeoReX_zStj1ufbA6YtNtd639wBsbg21x9GlDkg3JZ3-wuO1Swtq5wuJd7NbWZN8FrNtVF31-22IdltjnhA86eh3yGTpxuk128tPH6Pn25ml2T-aPdw-z6zkxFUAmEmppi53Gyaam06k1DeOLRhu7WFQGtBPcON4wuhScO2CmEjCV1EhjQDS1Y2N0Mewtpt73NmW17vYxlJOKUeBcCsrqQlUDZWL5I1qndtFvdewVBfUVpBqCVCVI9R2k6ouIDaJU4LCy8W_1P6pPhvh3Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104476138</pqid></control><display><type>article</type><title>Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant</title><source>SpringerNature Journals</source><creator>Guan, Yunhe ; Wang, Yan ; Shen, Luping ; Qian, Guobing</creator><creatorcontrib>Guan, Yunhe ; Wang, Yan ; Shen, Luping ; Qian, Guobing</creatorcontrib><description>Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input signals in non-Gaussian noises. Nevertheless, the estimation accuracy of MCCC-APA is limited. In this paper, we introduce the complex kernel risk-sensitive loss (CKRSL) as the cost function to integrate with APA, and then propose the widely linear complex kernel risk-sensitive loss affine projection algorithm (WL-CKRSL-APA) to deal well with the colored signals in non-Gaussian noises. To strike a balance between the convergence rate and filtering accuracy, we utilize a proportional coefficient and interval updating strategy to obtain an improved filtering performance. To validate its effectiveness, we conduct simulation experiments through system identification and stereophonic acoustic echo cancellation (SAEC).</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-024-03472-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Cost function ; Filtration ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Risk ; Signal,Image and Speech Processing ; System identification ; Vision</subject><ispartof>Signal, image and video processing, 2024-11, Vol.18 (11), p.8293-8301</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7087e7869f798155ec934b9acebb2c0af64cf4931d644f03c260571c7cc0698f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-024-03472-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-024-03472-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Guan, Yunhe</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Shen, Luping</creatorcontrib><creatorcontrib>Qian, Guobing</creatorcontrib><title>Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input signals in non-Gaussian noises. Nevertheless, the estimation accuracy of MCCC-APA is limited. In this paper, we introduce the complex kernel risk-sensitive loss (CKRSL) as the cost function to integrate with APA, and then propose the widely linear complex kernel risk-sensitive loss affine projection algorithm (WL-CKRSL-APA) to deal well with the colored signals in non-Gaussian noises. To strike a balance between the convergence rate and filtering accuracy, we utilize a proportional coefficient and interval updating strategy to obtain an improved filtering performance. To validate its effectiveness, we conduct simulation experiments through system identification and stereophonic acoustic echo cancellation (SAEC).</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Cost function</subject><subject>Filtration</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Risk</subject><subject>Signal,Image and Speech Processing</subject><subject>System identification</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2C3gi8YwOC4Xdo2n8lzTxovFiQiiFSrtlK9DG_faia_TmXGYOvzfz5iF0TuGSAsirRKkUQKDiBBiXFemP0IjWghEqKT3-nYGdoklKayjFKlmLeoReX_zStj1ufbA6YtNtd639wBsbg21x9GlDkg3JZ3-wuO1Swtq5wuJd7NbWZN8FrNtVF31-22IdltjnhA86eh3yGTpxuk128tPH6Pn25ml2T-aPdw-z6zkxFUAmEmppi53Gyaam06k1DeOLRhu7WFQGtBPcON4wuhScO2CmEjCV1EhjQDS1Y2N0Mewtpt73NmW17vYxlJOKUeBcCsrqQlUDZWL5I1qndtFvdewVBfUVpBqCVCVI9R2k6ouIDaJU4LCy8W_1P6pPhvh3Lw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Guan, Yunhe</creator><creator>Wang, Yan</creator><creator>Shen, Luping</creator><creator>Qian, Guobing</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant</title><author>Guan, Yunhe ; Wang, Yan ; Shen, Luping ; Qian, Guobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7087e7869f798155ec934b9acebb2c0af64cf4931d644f03c260571c7cc0698f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Cost function</topic><topic>Filtration</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Risk</topic><topic>Signal,Image and Speech Processing</topic><topic>System identification</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Yunhe</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Shen, Luping</creatorcontrib><creatorcontrib>Qian, Guobing</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Yunhe</au><au>Wang, Yan</au><au>Shen, Luping</au><au>Qian, Guobing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>18</volume><issue>11</issue><spage>8293</spage><epage>8301</epage><pages>8293-8301</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Recently, the affine projection algorithm (APA) has shown remarkable performance in Gaussian environments, but it will perform poorly in impulsive noise. The APA with the maximum complex correntropy criterion (MCCC) as the cost function was incorporated to address the issue of handling colored input signals in non-Gaussian noises. Nevertheless, the estimation accuracy of MCCC-APA is limited. In this paper, we introduce the complex kernel risk-sensitive loss (CKRSL) as the cost function to integrate with APA, and then propose the widely linear complex kernel risk-sensitive loss affine projection algorithm (WL-CKRSL-APA) to deal well with the colored signals in non-Gaussian noises. To strike a balance between the convergence rate and filtering accuracy, we utilize a proportional coefficient and interval updating strategy to obtain an improved filtering performance. To validate its effectiveness, we conduct simulation experiments through system identification and stereophonic acoustic echo cancellation (SAEC).</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-024-03472-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2024-11, Vol.18 (11), p.8293-8301
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_3104476138
source SpringerNature Journals
subjects Algorithms
Computer Imaging
Computer Science
Cost function
Filtration
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Risk
Signal,Image and Speech Processing
System identification
Vision
title Widely linear complex kernel risk-sensitive loss affine projection algorithm and its variant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Widely%20linear%20complex%20kernel%20risk-sensitive%20loss%20affine%20projection%20algorithm%20and%20its%20variant&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Guan,%20Yunhe&rft.date=2024-11-01&rft.volume=18&rft.issue=11&rft.spage=8293&rft.epage=8301&rft.pages=8293-8301&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-024-03472-y&rft_dat=%3Cproquest_cross%3E3104476138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104476138&rft_id=info:pmid/&rfr_iscdi=true