The Norming Sets ofLml1n
Let n ∈ ℕ, n ≥ 2 . An element ( x 1 ,…, x n ) ∈ E n is called a norming point of T ∈ L n E if || x 1 || = … = || x n || = 1 and |T ( x 1 , … , x n ) | = || T ||, where ℒ( n E ) denotes the space of all continuous n -linear forms on E. For T ∈ ℒ ( n E ), we define Norm T = x 1 , ⋯ , x n ∈ E n : x 1 ,...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2024, Vol.76 (3), p.426-442 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
n
∈ ℕ,
n
≥ 2
.
An element (
x
1
,…,
x
n
) ∈
E
n
is called a
norming point
of
T
∈
L
n
E
if ||
x
1
|| =
…
= ||
x
n
|| = 1 and
|T
(
x
1
,
…
,
x
n
)
|
= ||
T
||, where ℒ(
n
E
) denotes the space of all continuous
n
-linear forms on
E.
For
T
∈ ℒ (
n
E
), we define
Norm
T
=
x
1
,
⋯
,
x
n
∈
E
n
:
x
1
,
⋯
,
x
n
is a norming point of
T
.
The set Norm(
T
) is called the
norming set
of
T.
For
m
∈ ℕ
, m
≥ 2, we characterize Norm(
T
) for any
T
∈
L
m
l
1
n
, where
l
1
n
=
R
n
with the
l
1
-norm. As applications, we classify Norm(
T
) for every
T
∈
L
m
l
1
n
with
n
= 2, 3 and
m
= 2
. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-024-02329-4 |