Fractional Parabolic Systems of Vector Order
We consider the Cauchy problem for a system of partial differential equations of fractional order D t B U(t, x) + A (D)U(t, x) = H(t, x), where U and H are vector-valued functions and the m × m-matrix of differential operators A (D) is triangular with elliptic operators on the diagonal. The main fea...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.284 (2), p.179-195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 2 |
container_start_page | 179 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 284 |
creator | Ashurov, R. Sulaymonov, I. |
description | We consider the Cauchy problem for a system of partial differential equations of fractional order
D
t
B
U(t, x) +
A
(D)U(t, x) = H(t, x), where U and H are vector-valued functions and the m × m-matrix of differential operators
A
(D) is triangular with elliptic operators on the diagonal. The main feature of this system is that the vector order
B
has different components β
j
∈ (0, 1] which are not necessarily rational. We find sufficient (and necessary in some cases) conditions on the initial function and right-hand side of the equation that guarantee the existence of the classical solution. |
doi_str_mv | 10.1007/s10958-024-07342-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104475687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104475687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1153-cb1101df76c390b9eb9d4849ba2c03a9d70981c58688e678277b1a66ce738c483</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCV6OTTTaTHKVYFQoV_LiGJJuVLW1Tk-2h_97oCt48zTC8z8vwEHLJ4IYB4G1moBtFoRYUkIua8iMyYQ1yqlA3x2UHLEeO4pSc5byCAknFJ-R6nqwf-ri16-rZJuviuvfVyyEPYZOr2FXvwQ8xVcvUhnROTjq7zuHid07J2_z-dfZIF8uHp9ndgnrGGk69YwxY26H0XIPTwelWKKGdrT1wq1sErZhvlFQqSFQ1omNWSh-QKy8Un5KrsXeX4uc-5MGs4j6VF7PhDITARiosqXpM-RRzTqEzu9RvbDoYBubbihmtmGLF_FgxvEB8hHIJbz9C-qv-h_oCSixilg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104475687</pqid></control><display><type>article</type><title>Fractional Parabolic Systems of Vector Order</title><source>SpringerLink Journals</source><creator>Ashurov, R. ; Sulaymonov, I.</creator><creatorcontrib>Ashurov, R. ; Sulaymonov, I.</creatorcontrib><description>We consider the Cauchy problem for a system of partial differential equations of fractional order
D
t
B
U(t, x) +
A
(D)U(t, x) = H(t, x), where U and H are vector-valued functions and the m × m-matrix of differential operators
A
(D) is triangular with elliptic operators on the diagonal. The main feature of this system is that the vector order
B
has different components β
j
∈ (0, 1] which are not necessarily rational. We find sufficient (and necessary in some cases) conditions on the initial function and right-hand side of the equation that guarantee the existence of the classical solution.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-07342-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cauchy problems ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial differential equations</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024, Vol.284 (2), p.179-195</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1153-cb1101df76c390b9eb9d4849ba2c03a9d70981c58688e678277b1a66ce738c483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-024-07342-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-024-07342-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ashurov, R.</creatorcontrib><creatorcontrib>Sulaymonov, I.</creatorcontrib><title>Fractional Parabolic Systems of Vector Order</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the Cauchy problem for a system of partial differential equations of fractional order
D
t
B
U(t, x) +
A
(D)U(t, x) = H(t, x), where U and H are vector-valued functions and the m × m-matrix of differential operators
A
(D) is triangular with elliptic operators on the diagonal. The main feature of this system is that the vector order
B
has different components β
j
∈ (0, 1] which are not necessarily rational. We find sufficient (and necessary in some cases) conditions on the initial function and right-hand side of the equation that guarantee the existence of the classical solution.</description><subject>Cauchy problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCV6OTTTaTHKVYFQoV_LiGJJuVLW1Tk-2h_97oCt48zTC8z8vwEHLJ4IYB4G1moBtFoRYUkIua8iMyYQ1yqlA3x2UHLEeO4pSc5byCAknFJ-R6nqwf-ri16-rZJuviuvfVyyEPYZOr2FXvwQ8xVcvUhnROTjq7zuHid07J2_z-dfZIF8uHp9ndgnrGGk69YwxY26H0XIPTwelWKKGdrT1wq1sErZhvlFQqSFQ1omNWSh-QKy8Un5KrsXeX4uc-5MGs4j6VF7PhDITARiosqXpM-RRzTqEzu9RvbDoYBubbihmtmGLF_FgxvEB8hHIJbz9C-qv-h_oCSixilg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ashurov, R.</creator><creator>Sulaymonov, I.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Fractional Parabolic Systems of Vector Order</title><author>Ashurov, R. ; Sulaymonov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1153-cb1101df76c390b9eb9d4849ba2c03a9d70981c58688e678277b1a66ce738c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashurov, R.</creatorcontrib><creatorcontrib>Sulaymonov, I.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashurov, R.</au><au>Sulaymonov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Parabolic Systems of Vector Order</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024</date><risdate>2024</risdate><volume>284</volume><issue>2</issue><spage>179</spage><epage>195</epage><pages>179-195</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the Cauchy problem for a system of partial differential equations of fractional order
D
t
B
U(t, x) +
A
(D)U(t, x) = H(t, x), where U and H are vector-valued functions and the m × m-matrix of differential operators
A
(D) is triangular with elliptic operators on the diagonal. The main feature of this system is that the vector order
B
has different components β
j
∈ (0, 1] which are not necessarily rational. We find sufficient (and necessary in some cases) conditions on the initial function and right-hand side of the equation that guarantee the existence of the classical solution.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-07342-3</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2024, Vol.284 (2), p.179-195 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_3104475687 |
source | SpringerLink Journals |
subjects | Cauchy problems Mathematics Mathematics and Statistics Operators (mathematics) Partial differential equations |
title | Fractional Parabolic Systems of Vector Order |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Parabolic%20Systems%20of%20Vector%20Order&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Ashurov,%20R.&rft.date=2024&rft.volume=284&rft.issue=2&rft.spage=179&rft.epage=195&rft.pages=179-195&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-07342-3&rft_dat=%3Cproquest_cross%3E3104475687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104475687&rft_id=info:pmid/&rfr_iscdi=true |