Human–machine partnerships at the exascale: exploring simulation ensembles through image databases
The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that co...
Gespeichert in:
Veröffentlicht in: | Journal of visualization 2024, Vol.27 (5), p.963-981 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 981 |
---|---|
container_issue | 5 |
container_start_page | 963 |
container_title | Journal of visualization |
container_volume | 27 |
creator | Dahshan, Mai Polys, Nicholas House, Leanna North, Chris Pollyea, Ryan M. Turton, Terece L. Rogers, David H. |
description | The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.
Graphical abstract |
doi_str_mv | 10.1007/s12650-024-00999-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104475625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104475625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3408a046172e110bbcd5a1a79a88b88cf2b9783c06a73b0c539f717bb8c4c6453</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA6-hNkzapOxnUEQQ3ug43mXTaoX8mLejOd_ANfRI7VnDn6h4u59yfj5BzDpccQF1FnmQpMEgkA8jznKkDsuBapUznKj2ctJCC6alxTE5i3AEkXCq-IJv12GD79fHZoCur1tMew9D6EMuqjxQHOpSe-jeMDmt_Pam-7kLVbmmsmrHGoepa6tvoG1v7OJlDN25LWjW49XSDA1qMPp6SowLr6M9-65K83N0-r9bs8en-YXXzyFyiYGBCgkaQGVeJ5xysdZsUOaoctbZauyKxudLCQYZKWHCpyAvFlbXaSZfJVCzJxTy3D93r6ONgdt0Y2mmlERykVGmW7F3J7HKhizH4wvRhOji8Gw5mT9PMNM1E0_zQNGoKiTkU-_37PvyN_if1DSXyegY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104475625</pqid></control><display><type>article</type><title>Human–machine partnerships at the exascale: exploring simulation ensembles through image databases</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dahshan, Mai ; Polys, Nicholas ; House, Leanna ; North, Chris ; Pollyea, Ryan M. ; Turton, Terece L. ; Rogers, David H.</creator><creatorcontrib>Dahshan, Mai ; Polys, Nicholas ; House, Leanna ; North, Chris ; Pollyea, Ryan M. ; Turton, Terece L. ; Rogers, David H.</creatorcontrib><description>The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.
Graphical abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-024-00999-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computer Imaging ; Deep learning ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Feature extraction ; Heat and Mass Transfer ; Image databases ; Initial conditions ; Input output analysis ; Machine learning ; Multidimensional data ; Parameters ; Pattern Recognition and Graphics ; Regular Paper ; Simulation ; Software ; Vision ; Visualization</subject><ispartof>Journal of visualization, 2024, Vol.27 (5), p.963-981</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3408a046172e110bbcd5a1a79a88b88cf2b9783c06a73b0c539f717bb8c4c6453</cites><orcidid>0000-0002-5758-4890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-024-00999-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-024-00999-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dahshan, Mai</creatorcontrib><creatorcontrib>Polys, Nicholas</creatorcontrib><creatorcontrib>House, Leanna</creatorcontrib><creatorcontrib>North, Chris</creatorcontrib><creatorcontrib>Pollyea, Ryan M.</creatorcontrib><creatorcontrib>Turton, Terece L.</creatorcontrib><creatorcontrib>Rogers, David H.</creatorcontrib><title>Human–machine partnerships at the exascale: exploring simulation ensembles through image databases</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.
Graphical abstract</description><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Feature extraction</subject><subject>Heat and Mass Transfer</subject><subject>Image databases</subject><subject>Initial conditions</subject><subject>Input output analysis</subject><subject>Machine learning</subject><subject>Multidimensional data</subject><subject>Parameters</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Simulation</subject><subject>Software</subject><subject>Vision</subject><subject>Visualization</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuA6-hNkzapOxnUEQQ3ug43mXTaoX8mLejOd_ANfRI7VnDn6h4u59yfj5BzDpccQF1FnmQpMEgkA8jznKkDsuBapUznKj2ctJCC6alxTE5i3AEkXCq-IJv12GD79fHZoCur1tMew9D6EMuqjxQHOpSe-jeMDmt_Pam-7kLVbmmsmrHGoepa6tvoG1v7OJlDN25LWjW49XSDA1qMPp6SowLr6M9-65K83N0-r9bs8en-YXXzyFyiYGBCgkaQGVeJ5xysdZsUOaoctbZauyKxudLCQYZKWHCpyAvFlbXaSZfJVCzJxTy3D93r6ONgdt0Y2mmlERykVGmW7F3J7HKhizH4wvRhOji8Gw5mT9PMNM1E0_zQNGoKiTkU-_37PvyN_if1DSXyegY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Dahshan, Mai</creator><creator>Polys, Nicholas</creator><creator>House, Leanna</creator><creator>North, Chris</creator><creator>Pollyea, Ryan M.</creator><creator>Turton, Terece L.</creator><creator>Rogers, David H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5758-4890</orcidid></search><sort><creationdate>2024</creationdate><title>Human–machine partnerships at the exascale: exploring simulation ensembles through image databases</title><author>Dahshan, Mai ; Polys, Nicholas ; House, Leanna ; North, Chris ; Pollyea, Ryan M. ; Turton, Terece L. ; Rogers, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3408a046172e110bbcd5a1a79a88b88cf2b9783c06a73b0c539f717bb8c4c6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Feature extraction</topic><topic>Heat and Mass Transfer</topic><topic>Image databases</topic><topic>Initial conditions</topic><topic>Input output analysis</topic><topic>Machine learning</topic><topic>Multidimensional data</topic><topic>Parameters</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Simulation</topic><topic>Software</topic><topic>Vision</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahshan, Mai</creatorcontrib><creatorcontrib>Polys, Nicholas</creatorcontrib><creatorcontrib>House, Leanna</creatorcontrib><creatorcontrib>North, Chris</creatorcontrib><creatorcontrib>Pollyea, Ryan M.</creatorcontrib><creatorcontrib>Turton, Terece L.</creatorcontrib><creatorcontrib>Rogers, David H.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahshan, Mai</au><au>Polys, Nicholas</au><au>House, Leanna</au><au>North, Chris</au><au>Pollyea, Ryan M.</au><au>Turton, Terece L.</au><au>Rogers, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human–machine partnerships at the exascale: exploring simulation ensembles through image databases</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2024</date><risdate>2024</risdate><volume>27</volume><issue>5</issue><spage>963</spage><epage>981</epage><pages>963-981</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-024-00999-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5758-4890</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8875 |
ispartof | Journal of visualization, 2024, Vol.27 (5), p.963-981 |
issn | 1343-8875 1875-8975 |
language | eng |
recordid | cdi_proquest_journals_3104475625 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical and Continuum Physics Computer Imaging Deep learning Engineering Engineering Fluid Dynamics Engineering Thermodynamics Feature extraction Heat and Mass Transfer Image databases Initial conditions Input output analysis Machine learning Multidimensional data Parameters Pattern Recognition and Graphics Regular Paper Simulation Software Vision Visualization |
title | Human–machine partnerships at the exascale: exploring simulation ensembles through image databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%E2%80%93machine%20partnerships%20at%20the%20exascale:%20exploring%20simulation%20ensembles%20through%20image%20databases&rft.jtitle=Journal%20of%20visualization&rft.au=Dahshan,%20Mai&rft.date=2024&rft.volume=27&rft.issue=5&rft.spage=963&rft.epage=981&rft.pages=963-981&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-024-00999-7&rft_dat=%3Cproquest_cross%3E3104475625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104475625&rft_id=info:pmid/&rfr_iscdi=true |