Human–machine partnerships at the exascale: exploring simulation ensembles through image databases

The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualization 2024, Vol.27 (5), p.963-981
Hauptverfasser: Dahshan, Mai, Polys, Nicholas, House, Leanna, North, Chris, Pollyea, Ryan M., Turton, Terece L., Rogers, David H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 981
container_issue 5
container_start_page 963
container_title Journal of visualization
container_volume 27
creator Dahshan, Mai
Polys, Nicholas
House, Leanna
North, Chris
Pollyea, Ryan M.
Turton, Terece L.
Rogers, David H.
description The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles. Graphical abstract
doi_str_mv 10.1007/s12650-024-00999-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104475625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104475625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3408a046172e110bbcd5a1a79a88b88cf2b9783c06a73b0c539f717bb8c4c6453</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA6-hNkzapOxnUEQQ3ug43mXTaoX8mLejOd_ANfRI7VnDn6h4u59yfj5BzDpccQF1FnmQpMEgkA8jznKkDsuBapUznKj2ctJCC6alxTE5i3AEkXCq-IJv12GD79fHZoCur1tMew9D6EMuqjxQHOpSe-jeMDmt_Pam-7kLVbmmsmrHGoepa6tvoG1v7OJlDN25LWjW49XSDA1qMPp6SowLr6M9-65K83N0-r9bs8en-YXXzyFyiYGBCgkaQGVeJ5xysdZsUOaoctbZauyKxudLCQYZKWHCpyAvFlbXaSZfJVCzJxTy3D93r6ONgdt0Y2mmlERykVGmW7F3J7HKhizH4wvRhOji8Gw5mT9PMNM1E0_zQNGoKiTkU-_37PvyN_if1DSXyegY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104475625</pqid></control><display><type>article</type><title>Human–machine partnerships at the exascale: exploring simulation ensembles through image databases</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dahshan, Mai ; Polys, Nicholas ; House, Leanna ; North, Chris ; Pollyea, Ryan M. ; Turton, Terece L. ; Rogers, David H.</creator><creatorcontrib>Dahshan, Mai ; Polys, Nicholas ; House, Leanna ; North, Chris ; Pollyea, Ryan M. ; Turton, Terece L. ; Rogers, David H.</creatorcontrib><description>The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles. Graphical abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-024-00999-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computer Imaging ; Deep learning ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Feature extraction ; Heat and Mass Transfer ; Image databases ; Initial conditions ; Input output analysis ; Machine learning ; Multidimensional data ; Parameters ; Pattern Recognition and Graphics ; Regular Paper ; Simulation ; Software ; Vision ; Visualization</subject><ispartof>Journal of visualization, 2024, Vol.27 (5), p.963-981</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3408a046172e110bbcd5a1a79a88b88cf2b9783c06a73b0c539f717bb8c4c6453</cites><orcidid>0000-0002-5758-4890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-024-00999-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-024-00999-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dahshan, Mai</creatorcontrib><creatorcontrib>Polys, Nicholas</creatorcontrib><creatorcontrib>House, Leanna</creatorcontrib><creatorcontrib>North, Chris</creatorcontrib><creatorcontrib>Pollyea, Ryan M.</creatorcontrib><creatorcontrib>Turton, Terece L.</creatorcontrib><creatorcontrib>Rogers, David H.</creatorcontrib><title>Human–machine partnerships at the exascale: exploring simulation ensembles through image databases</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles. Graphical abstract</description><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Feature extraction</subject><subject>Heat and Mass Transfer</subject><subject>Image databases</subject><subject>Initial conditions</subject><subject>Input output analysis</subject><subject>Machine learning</subject><subject>Multidimensional data</subject><subject>Parameters</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Simulation</subject><subject>Software</subject><subject>Vision</subject><subject>Visualization</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuA6-hNkzapOxnUEQQ3ug43mXTaoX8mLejOd_ANfRI7VnDn6h4u59yfj5BzDpccQF1FnmQpMEgkA8jznKkDsuBapUznKj2ctJCC6alxTE5i3AEkXCq-IJv12GD79fHZoCur1tMew9D6EMuqjxQHOpSe-jeMDmt_Pam-7kLVbmmsmrHGoepa6tvoG1v7OJlDN25LWjW49XSDA1qMPp6SowLr6M9-65K83N0-r9bs8en-YXXzyFyiYGBCgkaQGVeJ5xysdZsUOaoctbZauyKxudLCQYZKWHCpyAvFlbXaSZfJVCzJxTy3D93r6ONgdt0Y2mmlERykVGmW7F3J7HKhizH4wvRhOji8Gw5mT9PMNM1E0_zQNGoKiTkU-_37PvyN_if1DSXyegY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Dahshan, Mai</creator><creator>Polys, Nicholas</creator><creator>House, Leanna</creator><creator>North, Chris</creator><creator>Pollyea, Ryan M.</creator><creator>Turton, Terece L.</creator><creator>Rogers, David H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5758-4890</orcidid></search><sort><creationdate>2024</creationdate><title>Human–machine partnerships at the exascale: exploring simulation ensembles through image databases</title><author>Dahshan, Mai ; Polys, Nicholas ; House, Leanna ; North, Chris ; Pollyea, Ryan M. ; Turton, Terece L. ; Rogers, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3408a046172e110bbcd5a1a79a88b88cf2b9783c06a73b0c539f717bb8c4c6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Feature extraction</topic><topic>Heat and Mass Transfer</topic><topic>Image databases</topic><topic>Initial conditions</topic><topic>Input output analysis</topic><topic>Machine learning</topic><topic>Multidimensional data</topic><topic>Parameters</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Simulation</topic><topic>Software</topic><topic>Vision</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahshan, Mai</creatorcontrib><creatorcontrib>Polys, Nicholas</creatorcontrib><creatorcontrib>House, Leanna</creatorcontrib><creatorcontrib>North, Chris</creatorcontrib><creatorcontrib>Pollyea, Ryan M.</creatorcontrib><creatorcontrib>Turton, Terece L.</creatorcontrib><creatorcontrib>Rogers, David H.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahshan, Mai</au><au>Polys, Nicholas</au><au>House, Leanna</au><au>North, Chris</au><au>Pollyea, Ryan M.</au><au>Turton, Terece L.</au><au>Rogers, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human–machine partnerships at the exascale: exploring simulation ensembles through image databases</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2024</date><risdate>2024</risdate><volume>27</volume><issue>5</issue><spage>963</spage><epage>981</epage><pages>963-981</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-024-00999-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5758-4890</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1343-8875
ispartof Journal of visualization, 2024, Vol.27 (5), p.963-981
issn 1343-8875
1875-8975
language eng
recordid cdi_proquest_journals_3104475625
source SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Computer Imaging
Deep learning
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Feature extraction
Heat and Mass Transfer
Image databases
Initial conditions
Input output analysis
Machine learning
Multidimensional data
Parameters
Pattern Recognition and Graphics
Regular Paper
Simulation
Software
Vision
Visualization
title Human–machine partnerships at the exascale: exploring simulation ensembles through image databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%E2%80%93machine%20partnerships%20at%20the%20exascale:%20exploring%20simulation%20ensembles%20through%20image%20databases&rft.jtitle=Journal%20of%20visualization&rft.au=Dahshan,%20Mai&rft.date=2024&rft.volume=27&rft.issue=5&rft.spage=963&rft.epage=981&rft.pages=963-981&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-024-00999-7&rft_dat=%3Cproquest_cross%3E3104475625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104475625&rft_id=info:pmid/&rfr_iscdi=true