Silica infiltration as a strategy to overcome zirconia degradation

The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical and materials engineering 2024-09, Vol.19 (1), p.30, Article 30
Hauptverfasser: Alfrisany, Najm M., Somogyi-Ganss, Eszter, Tam, Laura E, Hatton, Benjamin D., Sodhi, Rana N. S., Yin, Ling, De Souza, Grace M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 30
container_title International journal of mechanical and materials engineering
container_volume 19
creator Alfrisany, Najm M.
Somogyi-Ganss, Eszter
Tam, Laura E
Hatton, Benjamin D.
Sodhi, Rana N. S.
Yin, Ling
De Souza, Grace M.
description The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA). Four zirconia materials with different translucencies ( n  = 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO 2 ) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH 4 OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS). There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces ( p  
doi_str_mv 10.1186/s40712-024-00180-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3104355826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A808671360</galeid><sourcerecordid>A808671360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-9ca03b21312a73219e84dbf39bbf4852b46738c652c0820fc5f3023039b5fab03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA562Tr93ssRa_oOBBPYdsNlki7aYmq6X-etOuoCeZw0zgeSfzvghdEpgTIsvrxKEitADKCwAiodidoAkD4IWshTz9M5-jWUq-AcFZXdKKTtDNs197o7HvnV8PUQ8-9FgnrHE6vGy3x0PA4dNGEzYWf_nce69xa7uo2yN-gc6cXic7--lT9Hp3-7J8KFZP94_LxaowVLKhqI0G1lDCCNUVo6S2kreNY3XTOC4FbXhZMWlKQQ1ICs4Ix4AyyIBwugE2RVfj3m0M7x82DeotfMQ-f6kYAc6EkLTM1HykOr22KtsK2YfJ1dqNz7fb7NOqhQRZVoSVh7V0FJgYUorWqW30Gx33ioA65KvGfFXOVx3zVbssYqMoZbjvbPy95R_VN1LifNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104355826</pqid></control><display><type>article</type><title>Silica infiltration as a strategy to overcome zirconia degradation</title><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Alfrisany, Najm M. ; Somogyi-Ganss, Eszter ; Tam, Laura E ; Hatton, Benjamin D. ; Sodhi, Rana N. S. ; Yin, Ling ; De Souza, Grace M.</creator><creatorcontrib>Alfrisany, Najm M. ; Somogyi-Ganss, Eszter ; Tam, Laura E ; Hatton, Benjamin D. ; Sodhi, Rana N. S. ; Yin, Ling ; De Souza, Grace M.</creatorcontrib><description>The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA). Four zirconia materials with different translucencies ( n  = 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO 2 ) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH 4 OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS). There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces ( p  &lt; 0.001). Silica deposition on zirconia surfaces improved the material resistance to degradation by AA.</description><identifier>ISSN: 3004-8958</identifier><identifier>ISSN: 1823-0334</identifier><identifier>EISSN: 3004-8958</identifier><identifier>EISSN: 2198-2791</identifier><identifier>DOI: 10.1186/s40712-024-00180-w</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Aging (artificial) ; Ammonium hydroxide ; Analysis ; Atomic layer epitaxy ; Chemical vapor deposition ; Crack propagation ; Dentistry ; Dielectric films ; Engineering ; Hardness ; Humidity ; Materials science ; Mechanical Engineering ; Mechanical properties ; Modulus of elasticity ; Nanoindentation ; Original Paper ; Partial stabilization ; Performance degradation ; Phase stability ; Photoelectrons ; Room temperature ; Silica ; Silicon dioxide ; Structural Materials ; Surface treatment ; Temperature ; Theoretical and Applied Mechanics ; Thin films ; X ray photoelectron spectroscopy ; X-ray spectroscopy ; Yttrium oxide ; Zirconium dioxide ; Zirconium oxide</subject><ispartof>International journal of mechanical and materials engineering, 2024-09, Vol.19 (1), p.30, Article 30</ispartof><rights>The Author(s) 2024</rights><rights>COPYRIGHT 2024 Springer</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-9ca03b21312a73219e84dbf39bbf4852b46738c652c0820fc5f3023039b5fab03</cites><orcidid>0000-0003-1258-9863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alfrisany, Najm M.</creatorcontrib><creatorcontrib>Somogyi-Ganss, Eszter</creatorcontrib><creatorcontrib>Tam, Laura E</creatorcontrib><creatorcontrib>Hatton, Benjamin D.</creatorcontrib><creatorcontrib>Sodhi, Rana N. S.</creatorcontrib><creatorcontrib>Yin, Ling</creatorcontrib><creatorcontrib>De Souza, Grace M.</creatorcontrib><title>Silica infiltration as a strategy to overcome zirconia degradation</title><title>International journal of mechanical and materials engineering</title><addtitle>J Mater. Sci: Mater Eng</addtitle><description>The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA). Four zirconia materials with different translucencies ( n  = 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO 2 ) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH 4 OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS). There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces ( p  &lt; 0.001). Silica deposition on zirconia surfaces improved the material resistance to degradation by AA.</description><subject>Aging (artificial)</subject><subject>Ammonium hydroxide</subject><subject>Analysis</subject><subject>Atomic layer epitaxy</subject><subject>Chemical vapor deposition</subject><subject>Crack propagation</subject><subject>Dentistry</subject><subject>Dielectric films</subject><subject>Engineering</subject><subject>Hardness</subject><subject>Humidity</subject><subject>Materials science</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Original Paper</subject><subject>Partial stabilization</subject><subject>Performance degradation</subject><subject>Phase stability</subject><subject>Photoelectrons</subject><subject>Room temperature</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Structural Materials</subject><subject>Surface treatment</subject><subject>Temperature</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray spectroscopy</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><subject>Zirconium oxide</subject><issn>3004-8958</issn><issn>1823-0334</issn><issn>3004-8958</issn><issn>2198-2791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA562Tr93ssRa_oOBBPYdsNlki7aYmq6X-etOuoCeZw0zgeSfzvghdEpgTIsvrxKEitADKCwAiodidoAkD4IWshTz9M5-jWUq-AcFZXdKKTtDNs197o7HvnV8PUQ8-9FgnrHE6vGy3x0PA4dNGEzYWf_nce69xa7uo2yN-gc6cXic7--lT9Hp3-7J8KFZP94_LxaowVLKhqI0G1lDCCNUVo6S2kreNY3XTOC4FbXhZMWlKQQ1ICs4Ix4AyyIBwugE2RVfj3m0M7x82DeotfMQ-f6kYAc6EkLTM1HykOr22KtsK2YfJ1dqNz7fb7NOqhQRZVoSVh7V0FJgYUorWqW30Gx33ioA65KvGfFXOVx3zVbssYqMoZbjvbPy95R_VN1LifNY</recordid><startdate>20240914</startdate><enddate>20240914</enddate><creator>Alfrisany, Najm M.</creator><creator>Somogyi-Ganss, Eszter</creator><creator>Tam, Laura E</creator><creator>Hatton, Benjamin D.</creator><creator>Sodhi, Rana N. S.</creator><creator>Yin, Ling</creator><creator>De Souza, Grace M.</creator><general>Springer Nature Singapore</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1258-9863</orcidid></search><sort><creationdate>20240914</creationdate><title>Silica infiltration as a strategy to overcome zirconia degradation</title><author>Alfrisany, Najm M. ; Somogyi-Ganss, Eszter ; Tam, Laura E ; Hatton, Benjamin D. ; Sodhi, Rana N. S. ; Yin, Ling ; De Souza, Grace M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-9ca03b21312a73219e84dbf39bbf4852b46738c652c0820fc5f3023039b5fab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging (artificial)</topic><topic>Ammonium hydroxide</topic><topic>Analysis</topic><topic>Atomic layer epitaxy</topic><topic>Chemical vapor deposition</topic><topic>Crack propagation</topic><topic>Dentistry</topic><topic>Dielectric films</topic><topic>Engineering</topic><topic>Hardness</topic><topic>Humidity</topic><topic>Materials science</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Original Paper</topic><topic>Partial stabilization</topic><topic>Performance degradation</topic><topic>Phase stability</topic><topic>Photoelectrons</topic><topic>Room temperature</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Structural Materials</topic><topic>Surface treatment</topic><topic>Temperature</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray spectroscopy</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><topic>Zirconium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alfrisany, Najm M.</creatorcontrib><creatorcontrib>Somogyi-Ganss, Eszter</creatorcontrib><creatorcontrib>Tam, Laura E</creatorcontrib><creatorcontrib>Hatton, Benjamin D.</creatorcontrib><creatorcontrib>Sodhi, Rana N. S.</creatorcontrib><creatorcontrib>Yin, Ling</creatorcontrib><creatorcontrib>De Souza, Grace M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of mechanical and materials engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alfrisany, Najm M.</au><au>Somogyi-Ganss, Eszter</au><au>Tam, Laura E</au><au>Hatton, Benjamin D.</au><au>Sodhi, Rana N. S.</au><au>Yin, Ling</au><au>De Souza, Grace M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica infiltration as a strategy to overcome zirconia degradation</atitle><jtitle>International journal of mechanical and materials engineering</jtitle><stitle>J Mater. Sci: Mater Eng</stitle><date>2024-09-14</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>30</spage><pages>30-</pages><artnum>30</artnum><issn>3004-8958</issn><issn>1823-0334</issn><eissn>3004-8958</eissn><eissn>2198-2791</eissn><abstract>The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA). Four zirconia materials with different translucencies ( n  = 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO 2 ) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH 4 OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS). There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces ( p  &lt; 0.001). Silica deposition on zirconia surfaces improved the material resistance to degradation by AA.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1186/s40712-024-00180-w</doi><orcidid>https://orcid.org/0000-0003-1258-9863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 3004-8958
ispartof International journal of mechanical and materials engineering, 2024-09, Vol.19 (1), p.30, Article 30
issn 3004-8958
1823-0334
3004-8958
2198-2791
language eng
recordid cdi_proquest_journals_3104355826
source SpringerNature Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aging (artificial)
Ammonium hydroxide
Analysis
Atomic layer epitaxy
Chemical vapor deposition
Crack propagation
Dentistry
Dielectric films
Engineering
Hardness
Humidity
Materials science
Mechanical Engineering
Mechanical properties
Modulus of elasticity
Nanoindentation
Original Paper
Partial stabilization
Performance degradation
Phase stability
Photoelectrons
Room temperature
Silica
Silicon dioxide
Structural Materials
Surface treatment
Temperature
Theoretical and Applied Mechanics
Thin films
X ray photoelectron spectroscopy
X-ray spectroscopy
Yttrium oxide
Zirconium dioxide
Zirconium oxide
title Silica infiltration as a strategy to overcome zirconia degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20infiltration%20as%20a%20strategy%20to%20overcome%20zirconia%20degradation&rft.jtitle=International%20journal%20of%20mechanical%20and%20materials%20engineering&rft.au=Alfrisany,%20Najm%20M.&rft.date=2024-09-14&rft.volume=19&rft.issue=1&rft.spage=30&rft.pages=30-&rft.artnum=30&rft.issn=3004-8958&rft.eissn=3004-8958&rft_id=info:doi/10.1186/s40712-024-00180-w&rft_dat=%3Cgale_proqu%3EA808671360%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104355826&rft_id=info:pmid/&rft_galeid=A808671360&rfr_iscdi=true