Silica infiltration as a strategy to overcome zirconia degradation
The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyze...
Gespeichert in:
Veröffentlicht in: | International journal of mechanical and materials engineering 2024-09, Vol.19 (1), p.30, Article 30 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | International journal of mechanical and materials engineering |
container_volume | 19 |
creator | Alfrisany, Najm M. Somogyi-Ganss, Eszter Tam, Laura E Hatton, Benjamin D. Sodhi, Rana N. S. Yin, Ling De Souza, Grace M. |
description | The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA).
Four zirconia materials with different translucencies (
n
= 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO
2
) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH
4
OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS).
There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces (
p
|
doi_str_mv | 10.1186/s40712-024-00180-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3104355826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A808671360</galeid><sourcerecordid>A808671360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-9ca03b21312a73219e84dbf39bbf4852b46738c652c0820fc5f3023039b5fab03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA562Tr93ssRa_oOBBPYdsNlki7aYmq6X-etOuoCeZw0zgeSfzvghdEpgTIsvrxKEitADKCwAiodidoAkD4IWshTz9M5-jWUq-AcFZXdKKTtDNs197o7HvnV8PUQ8-9FgnrHE6vGy3x0PA4dNGEzYWf_nce69xa7uo2yN-gc6cXic7--lT9Hp3-7J8KFZP94_LxaowVLKhqI0G1lDCCNUVo6S2kreNY3XTOC4FbXhZMWlKQQ1ICs4Ix4AyyIBwugE2RVfj3m0M7x82DeotfMQ-f6kYAc6EkLTM1HykOr22KtsK2YfJ1dqNz7fb7NOqhQRZVoSVh7V0FJgYUorWqW30Gx33ioA65KvGfFXOVx3zVbssYqMoZbjvbPy95R_VN1LifNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104355826</pqid></control><display><type>article</type><title>Silica infiltration as a strategy to overcome zirconia degradation</title><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Alfrisany, Najm M. ; Somogyi-Ganss, Eszter ; Tam, Laura E ; Hatton, Benjamin D. ; Sodhi, Rana N. S. ; Yin, Ling ; De Souza, Grace M.</creator><creatorcontrib>Alfrisany, Najm M. ; Somogyi-Ganss, Eszter ; Tam, Laura E ; Hatton, Benjamin D. ; Sodhi, Rana N. S. ; Yin, Ling ; De Souza, Grace M.</creatorcontrib><description>The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA).
Four zirconia materials with different translucencies (
n
= 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO
2
) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH
4
OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS).
There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces (
p
< 0.001). Silica deposition on zirconia surfaces improved the material resistance to degradation by AA.</description><identifier>ISSN: 3004-8958</identifier><identifier>ISSN: 1823-0334</identifier><identifier>EISSN: 3004-8958</identifier><identifier>EISSN: 2198-2791</identifier><identifier>DOI: 10.1186/s40712-024-00180-w</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Aging (artificial) ; Ammonium hydroxide ; Analysis ; Atomic layer epitaxy ; Chemical vapor deposition ; Crack propagation ; Dentistry ; Dielectric films ; Engineering ; Hardness ; Humidity ; Materials science ; Mechanical Engineering ; Mechanical properties ; Modulus of elasticity ; Nanoindentation ; Original Paper ; Partial stabilization ; Performance degradation ; Phase stability ; Photoelectrons ; Room temperature ; Silica ; Silicon dioxide ; Structural Materials ; Surface treatment ; Temperature ; Theoretical and Applied Mechanics ; Thin films ; X ray photoelectron spectroscopy ; X-ray spectroscopy ; Yttrium oxide ; Zirconium dioxide ; Zirconium oxide</subject><ispartof>International journal of mechanical and materials engineering, 2024-09, Vol.19 (1), p.30, Article 30</ispartof><rights>The Author(s) 2024</rights><rights>COPYRIGHT 2024 Springer</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-9ca03b21312a73219e84dbf39bbf4852b46738c652c0820fc5f3023039b5fab03</cites><orcidid>0000-0003-1258-9863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alfrisany, Najm M.</creatorcontrib><creatorcontrib>Somogyi-Ganss, Eszter</creatorcontrib><creatorcontrib>Tam, Laura E</creatorcontrib><creatorcontrib>Hatton, Benjamin D.</creatorcontrib><creatorcontrib>Sodhi, Rana N. S.</creatorcontrib><creatorcontrib>Yin, Ling</creatorcontrib><creatorcontrib>De Souza, Grace M.</creatorcontrib><title>Silica infiltration as a strategy to overcome zirconia degradation</title><title>International journal of mechanical and materials engineering</title><addtitle>J Mater. Sci: Mater Eng</addtitle><description>The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA).
Four zirconia materials with different translucencies (
n
= 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO
2
) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH
4
OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS).
There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces (
p
< 0.001). Silica deposition on zirconia surfaces improved the material resistance to degradation by AA.</description><subject>Aging (artificial)</subject><subject>Ammonium hydroxide</subject><subject>Analysis</subject><subject>Atomic layer epitaxy</subject><subject>Chemical vapor deposition</subject><subject>Crack propagation</subject><subject>Dentistry</subject><subject>Dielectric films</subject><subject>Engineering</subject><subject>Hardness</subject><subject>Humidity</subject><subject>Materials science</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Original Paper</subject><subject>Partial stabilization</subject><subject>Performance degradation</subject><subject>Phase stability</subject><subject>Photoelectrons</subject><subject>Room temperature</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Structural Materials</subject><subject>Surface treatment</subject><subject>Temperature</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray spectroscopy</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><subject>Zirconium oxide</subject><issn>3004-8958</issn><issn>1823-0334</issn><issn>3004-8958</issn><issn>2198-2791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA562Tr93ssRa_oOBBPYdsNlki7aYmq6X-etOuoCeZw0zgeSfzvghdEpgTIsvrxKEitADKCwAiodidoAkD4IWshTz9M5-jWUq-AcFZXdKKTtDNs197o7HvnV8PUQ8-9FgnrHE6vGy3x0PA4dNGEzYWf_nce69xa7uo2yN-gc6cXic7--lT9Hp3-7J8KFZP94_LxaowVLKhqI0G1lDCCNUVo6S2kreNY3XTOC4FbXhZMWlKQQ1ICs4Ix4AyyIBwugE2RVfj3m0M7x82DeotfMQ-f6kYAc6EkLTM1HykOr22KtsK2YfJ1dqNz7fb7NOqhQRZVoSVh7V0FJgYUorWqW30Gx33ioA65KvGfFXOVx3zVbssYqMoZbjvbPy95R_VN1LifNY</recordid><startdate>20240914</startdate><enddate>20240914</enddate><creator>Alfrisany, Najm M.</creator><creator>Somogyi-Ganss, Eszter</creator><creator>Tam, Laura E</creator><creator>Hatton, Benjamin D.</creator><creator>Sodhi, Rana N. S.</creator><creator>Yin, Ling</creator><creator>De Souza, Grace M.</creator><general>Springer Nature Singapore</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1258-9863</orcidid></search><sort><creationdate>20240914</creationdate><title>Silica infiltration as a strategy to overcome zirconia degradation</title><author>Alfrisany, Najm M. ; Somogyi-Ganss, Eszter ; Tam, Laura E ; Hatton, Benjamin D. ; Sodhi, Rana N. S. ; Yin, Ling ; De Souza, Grace M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-9ca03b21312a73219e84dbf39bbf4852b46738c652c0820fc5f3023039b5fab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging (artificial)</topic><topic>Ammonium hydroxide</topic><topic>Analysis</topic><topic>Atomic layer epitaxy</topic><topic>Chemical vapor deposition</topic><topic>Crack propagation</topic><topic>Dentistry</topic><topic>Dielectric films</topic><topic>Engineering</topic><topic>Hardness</topic><topic>Humidity</topic><topic>Materials science</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Original Paper</topic><topic>Partial stabilization</topic><topic>Performance degradation</topic><topic>Phase stability</topic><topic>Photoelectrons</topic><topic>Room temperature</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Structural Materials</topic><topic>Surface treatment</topic><topic>Temperature</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray spectroscopy</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><topic>Zirconium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alfrisany, Najm M.</creatorcontrib><creatorcontrib>Somogyi-Ganss, Eszter</creatorcontrib><creatorcontrib>Tam, Laura E</creatorcontrib><creatorcontrib>Hatton, Benjamin D.</creatorcontrib><creatorcontrib>Sodhi, Rana N. S.</creatorcontrib><creatorcontrib>Yin, Ling</creatorcontrib><creatorcontrib>De Souza, Grace M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of mechanical and materials engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alfrisany, Najm M.</au><au>Somogyi-Ganss, Eszter</au><au>Tam, Laura E</au><au>Hatton, Benjamin D.</au><au>Sodhi, Rana N. S.</au><au>Yin, Ling</au><au>De Souza, Grace M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica infiltration as a strategy to overcome zirconia degradation</atitle><jtitle>International journal of mechanical and materials engineering</jtitle><stitle>J Mater. Sci: Mater Eng</stitle><date>2024-09-14</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>30</spage><pages>30-</pages><artnum>30</artnum><issn>3004-8958</issn><issn>1823-0334</issn><eissn>3004-8958</eissn><eissn>2198-2791</eissn><abstract>The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA).
Four zirconia materials with different translucencies (
n
= 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO
2
) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH
4
OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS).
There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces (
p
< 0.001). Silica deposition on zirconia surfaces improved the material resistance to degradation by AA.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1186/s40712-024-00180-w</doi><orcidid>https://orcid.org/0000-0003-1258-9863</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 3004-8958 |
ispartof | International journal of mechanical and materials engineering, 2024-09, Vol.19 (1), p.30, Article 30 |
issn | 3004-8958 1823-0334 3004-8958 2198-2791 |
language | eng |
recordid | cdi_proquest_journals_3104355826 |
source | SpringerNature Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aging (artificial) Ammonium hydroxide Analysis Atomic layer epitaxy Chemical vapor deposition Crack propagation Dentistry Dielectric films Engineering Hardness Humidity Materials science Mechanical Engineering Mechanical properties Modulus of elasticity Nanoindentation Original Paper Partial stabilization Performance degradation Phase stability Photoelectrons Room temperature Silica Silicon dioxide Structural Materials Surface treatment Temperature Theoretical and Applied Mechanics Thin films X ray photoelectron spectroscopy X-ray spectroscopy Yttrium oxide Zirconium dioxide Zirconium oxide |
title | Silica infiltration as a strategy to overcome zirconia degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20infiltration%20as%20a%20strategy%20to%20overcome%20zirconia%20degradation&rft.jtitle=International%20journal%20of%20mechanical%20and%20materials%20engineering&rft.au=Alfrisany,%20Najm%20M.&rft.date=2024-09-14&rft.volume=19&rft.issue=1&rft.spage=30&rft.pages=30-&rft.artnum=30&rft.issn=3004-8958&rft.eissn=3004-8958&rft_id=info:doi/10.1186/s40712-024-00180-w&rft_dat=%3Cgale_proqu%3EA808671360%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104355826&rft_id=info:pmid/&rft_galeid=A808671360&rfr_iscdi=true |