EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography
The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential pro...
Gespeichert in:
Veröffentlicht in: | SN computer science 2024-09, Vol.5 (7), p.878, Article 878 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 878 |
container_title | SN computer science |
container_volume | 5 |
creator | Singh, Gajraj Darji, Anand D. Sarvaiya, Jignesh N. Patnaik, Suprva |
description | The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential process: identification of end-diastole (ED) and end-systole (ES) frames (echo phase detection) followed by the left ventricle ejection fraction (LVEF) prediction. To precisely describe cardiac function, proper attention must be given to spatial and temporal information and their interaction. Several deep learning (i.e., convolution neural networks, recurrent neural networks, and transformer) techniques have recently been introduced but have largely ignored the spatial and temporal information interaction. To address this issue, this study introduces EchoPhaseFormer, a transformer-based solution for echo phase detection (EPD) and LVEF prediction. A 3D convolution stemming is used to get the 3D patches from the echo sequence to retain the temporal information. The EchoPhaseFormer has an echo phase former block consisting of a conditional positional encoder and a phase self-attention module that ensures the spatial–temporal information extraction and their interaction. The EchoPhaseFormer outperformed the state-of-the-art architectures for both tasks on the EchoNet dataset. We obtain an average absolute frame distance of 1.01 for ED frames and 1.04 for ES frames for EPD, respectively. Regarding LVEF prediction, we obtain a mean absolute error of 4.77, a root mean square error of 6.14, and an R2 score of 0.81. |
doi_str_mv | 10.1007/s42979-024-03249-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104345440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104345440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1157-ac508bd8455cfd50fc3f4ca7ede1b5d09c547bf46487ed794e229a262fdcdbfc3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EElXpH2CyxBy4duw4YSt9AFIlGMqILMePNlUbF7sd-u9xEySYmO7rO0dXB6FbAvcEQDxERitRZUBZBjllVSYu0IAWBcnKCsTln_4ajWLcAADlwFjBB-hzptf-fa2infuws-ERj_EyqDa6bsRP6WLwGcIdhaf2YPWh8S1WrcHjVm1PsYm4aTGddpxWwTR-FdR-fbpBV05tox391CH6mM-Wk5ds8fb8OhkvMk0IF5nSHMralIxz7QwHp3PHtBLWWFJzA5XmTNSOFaxMO1ExS2mlaEGd0aZO9BDd9b774L-ONh7kxh9D-i3KnADLGWcMEkV7SgcfY7BO7kOzU-EkCchzkrJPUqYkZZekFEmU96KY4HZlw6_1P6pvWfJ2Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104345440</pqid></control><display><type>article</type><title>EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Gajraj ; Darji, Anand D. ; Sarvaiya, Jignesh N. ; Patnaik, Suprva</creator><creatorcontrib>Singh, Gajraj ; Darji, Anand D. ; Sarvaiya, Jignesh N. ; Patnaik, Suprva</creatorcontrib><description>The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential process: identification of end-diastole (ED) and end-systole (ES) frames (echo phase detection) followed by the left ventricle ejection fraction (LVEF) prediction. To precisely describe cardiac function, proper attention must be given to spatial and temporal information and their interaction. Several deep learning (i.e., convolution neural networks, recurrent neural networks, and transformer) techniques have recently been introduced but have largely ignored the spatial and temporal information interaction. To address this issue, this study introduces EchoPhaseFormer, a transformer-based solution for echo phase detection (EPD) and LVEF prediction. A 3D convolution stemming is used to get the 3D patches from the echo sequence to retain the temporal information. The EchoPhaseFormer has an echo phase former block consisting of a conditional positional encoder and a phase self-attention module that ensures the spatial–temporal information extraction and their interaction. The EchoPhaseFormer outperformed the state-of-the-art architectures for both tasks on the EchoNet dataset. We obtain an average absolute frame distance of 1.01 for ED frames and 1.04 for ES frames for EPD, respectively. Regarding LVEF prediction, we obtain a mean absolute error of 4.77, a root mean square error of 6.14, and an R2 score of 0.81.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-024-03249-7</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Cardiac function ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Computer vision ; Convolution ; Data Structures and Information Theory ; Diastole ; Echocardiography ; Ejection fraction ; Emerging Applications of Cyber-Physical System ; Frames ; Function analysis ; Information retrieval ; Information Systems and Communication Service ; Magnetic resonance imaging ; Neural networks ; Original Research ; Pattern Recognition and Graphics ; Recurrent neural networks ; Software Engineering/Programming and Operating Systems ; Spatiotemporal data ; Stroke volume ; Systole ; Two dimensional analysis ; Ultrasonic imaging ; Vision ; Vision systems</subject><ispartof>SN computer science, 2024-09, Vol.5 (7), p.878, Article 878</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1157-ac508bd8455cfd50fc3f4ca7ede1b5d09c547bf46487ed794e229a262fdcdbfc3</cites><orcidid>0000-0003-3606-4439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-024-03249-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42979-024-03249-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Singh, Gajraj</creatorcontrib><creatorcontrib>Darji, Anand D.</creatorcontrib><creatorcontrib>Sarvaiya, Jignesh N.</creatorcontrib><creatorcontrib>Patnaik, Suprva</creatorcontrib><title>EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential process: identification of end-diastole (ED) and end-systole (ES) frames (echo phase detection) followed by the left ventricle ejection fraction (LVEF) prediction. To precisely describe cardiac function, proper attention must be given to spatial and temporal information and their interaction. Several deep learning (i.e., convolution neural networks, recurrent neural networks, and transformer) techniques have recently been introduced but have largely ignored the spatial and temporal information interaction. To address this issue, this study introduces EchoPhaseFormer, a transformer-based solution for echo phase detection (EPD) and LVEF prediction. A 3D convolution stemming is used to get the 3D patches from the echo sequence to retain the temporal information. The EchoPhaseFormer has an echo phase former block consisting of a conditional positional encoder and a phase self-attention module that ensures the spatial–temporal information extraction and their interaction. The EchoPhaseFormer outperformed the state-of-the-art architectures for both tasks on the EchoNet dataset. We obtain an average absolute frame distance of 1.01 for ED frames and 1.04 for ES frames for EPD, respectively. Regarding LVEF prediction, we obtain a mean absolute error of 4.77, a root mean square error of 6.14, and an R2 score of 0.81.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Cardiac function</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Data Structures and Information Theory</subject><subject>Diastole</subject><subject>Echocardiography</subject><subject>Ejection fraction</subject><subject>Emerging Applications of Cyber-Physical System</subject><subject>Frames</subject><subject>Function analysis</subject><subject>Information retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Magnetic resonance imaging</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Recurrent neural networks</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Spatiotemporal data</subject><subject>Stroke volume</subject><subject>Systole</subject><subject>Two dimensional analysis</subject><subject>Ultrasonic imaging</subject><subject>Vision</subject><subject>Vision systems</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EElXpH2CyxBy4duw4YSt9AFIlGMqILMePNlUbF7sd-u9xEySYmO7rO0dXB6FbAvcEQDxERitRZUBZBjllVSYu0IAWBcnKCsTln_4ajWLcAADlwFjBB-hzptf-fa2infuws-ERj_EyqDa6bsRP6WLwGcIdhaf2YPWh8S1WrcHjVm1PsYm4aTGddpxWwTR-FdR-fbpBV05tox391CH6mM-Wk5ds8fb8OhkvMk0IF5nSHMralIxz7QwHp3PHtBLWWFJzA5XmTNSOFaxMO1ExS2mlaEGd0aZO9BDd9b774L-ONh7kxh9D-i3KnADLGWcMEkV7SgcfY7BO7kOzU-EkCchzkrJPUqYkZZekFEmU96KY4HZlw6_1P6pvWfJ2Wg</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Singh, Gajraj</creator><creator>Darji, Anand D.</creator><creator>Sarvaiya, Jignesh N.</creator><creator>Patnaik, Suprva</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-3606-4439</orcidid></search><sort><creationdate>20240913</creationdate><title>EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography</title><author>Singh, Gajraj ; Darji, Anand D. ; Sarvaiya, Jignesh N. ; Patnaik, Suprva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1157-ac508bd8455cfd50fc3f4ca7ede1b5d09c547bf46487ed794e229a262fdcdbfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Cardiac function</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Data Structures and Information Theory</topic><topic>Diastole</topic><topic>Echocardiography</topic><topic>Ejection fraction</topic><topic>Emerging Applications of Cyber-Physical System</topic><topic>Frames</topic><topic>Function analysis</topic><topic>Information retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Magnetic resonance imaging</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Recurrent neural networks</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Spatiotemporal data</topic><topic>Stroke volume</topic><topic>Systole</topic><topic>Two dimensional analysis</topic><topic>Ultrasonic imaging</topic><topic>Vision</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Gajraj</creatorcontrib><creatorcontrib>Darji, Anand D.</creatorcontrib><creatorcontrib>Sarvaiya, Jignesh N.</creatorcontrib><creatorcontrib>Patnaik, Suprva</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Gajraj</au><au>Darji, Anand D.</au><au>Sarvaiya, Jignesh N.</au><au>Patnaik, Suprva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2024-09-13</date><risdate>2024</risdate><volume>5</volume><issue>7</issue><spage>878</spage><pages>878-</pages><artnum>878</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential process: identification of end-diastole (ED) and end-systole (ES) frames (echo phase detection) followed by the left ventricle ejection fraction (LVEF) prediction. To precisely describe cardiac function, proper attention must be given to spatial and temporal information and their interaction. Several deep learning (i.e., convolution neural networks, recurrent neural networks, and transformer) techniques have recently been introduced but have largely ignored the spatial and temporal information interaction. To address this issue, this study introduces EchoPhaseFormer, a transformer-based solution for echo phase detection (EPD) and LVEF prediction. A 3D convolution stemming is used to get the 3D patches from the echo sequence to retain the temporal information. The EchoPhaseFormer has an echo phase former block consisting of a conditional positional encoder and a phase self-attention module that ensures the spatial–temporal information extraction and their interaction. The EchoPhaseFormer outperformed the state-of-the-art architectures for both tasks on the EchoNet dataset. We obtain an average absolute frame distance of 1.01 for ED frames and 1.04 for ES frames for EPD, respectively. Regarding LVEF prediction, we obtain a mean absolute error of 4.77, a root mean square error of 6.14, and an R2 score of 0.81.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-024-03249-7</doi><orcidid>https://orcid.org/0000-0003-3606-4439</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2661-8907 |
ispartof | SN computer science, 2024-09, Vol.5 (7), p.878, Article 878 |
issn | 2661-8907 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_3104345440 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial neural networks Automation Cardiac function Computer Imaging Computer Science Computer Systems Organization and Communication Networks Computer vision Convolution Data Structures and Information Theory Diastole Echocardiography Ejection fraction Emerging Applications of Cyber-Physical System Frames Function analysis Information retrieval Information Systems and Communication Service Magnetic resonance imaging Neural networks Original Research Pattern Recognition and Graphics Recurrent neural networks Software Engineering/Programming and Operating Systems Spatiotemporal data Stroke volume Systole Two dimensional analysis Ultrasonic imaging Vision Vision systems |
title | EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EchoPhaseFormer:%20A%20Transformer%20Based%20Echo%20Phase%20Detection%20and%20Analysis%20in%202D%20Echocardiography&rft.jtitle=SN%20computer%20science&rft.au=Singh,%20Gajraj&rft.date=2024-09-13&rft.volume=5&rft.issue=7&rft.spage=878&rft.pages=878-&rft.artnum=878&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-024-03249-7&rft_dat=%3Cproquest_cross%3E3104345440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104345440&rft_id=info:pmid/&rfr_iscdi=true |