EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography

The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2024-09, Vol.5 (7), p.878, Article 878
Hauptverfasser: Singh, Gajraj, Darji, Anand D., Sarvaiya, Jignesh N., Patnaik, Suprva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 878
container_title SN computer science
container_volume 5
creator Singh, Gajraj
Darji, Anand D.
Sarvaiya, Jignesh N.
Patnaik, Suprva
description The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential process: identification of end-diastole (ED) and end-systole (ES) frames (echo phase detection) followed by the left ventricle ejection fraction (LVEF) prediction. To precisely describe cardiac function, proper attention must be given to spatial and temporal information and their interaction. Several deep learning (i.e., convolution neural networks, recurrent neural networks, and transformer) techniques have recently been introduced but have largely ignored the spatial and temporal information interaction. To address this issue, this study introduces EchoPhaseFormer, a transformer-based solution for echo phase detection (EPD) and LVEF prediction. A 3D convolution stemming is used to get the 3D patches from the echo sequence to retain the temporal information. The EchoPhaseFormer has an echo phase former block consisting of a conditional positional encoder and a phase self-attention module that ensures the spatial–temporal information extraction and their interaction. The EchoPhaseFormer outperformed the state-of-the-art architectures for both tasks on the EchoNet dataset. We obtain an average absolute frame distance of 1.01 for ED frames and 1.04 for ES frames for EPD, respectively. Regarding LVEF prediction, we obtain a mean absolute error of 4.77, a root mean square error of 6.14, and an R2 score of 0.81.
doi_str_mv 10.1007/s42979-024-03249-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104345440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104345440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1157-ac508bd8455cfd50fc3f4ca7ede1b5d09c547bf46487ed794e229a262fdcdbfc3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EElXpH2CyxBy4duw4YSt9AFIlGMqILMePNlUbF7sd-u9xEySYmO7rO0dXB6FbAvcEQDxERitRZUBZBjllVSYu0IAWBcnKCsTln_4ajWLcAADlwFjBB-hzptf-fa2infuws-ERj_EyqDa6bsRP6WLwGcIdhaf2YPWh8S1WrcHjVm1PsYm4aTGddpxWwTR-FdR-fbpBV05tox391CH6mM-Wk5ds8fb8OhkvMk0IF5nSHMralIxz7QwHp3PHtBLWWFJzA5XmTNSOFaxMO1ExS2mlaEGd0aZO9BDd9b774L-ONh7kxh9D-i3KnADLGWcMEkV7SgcfY7BO7kOzU-EkCchzkrJPUqYkZZekFEmU96KY4HZlw6_1P6pvWfJ2Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104345440</pqid></control><display><type>article</type><title>EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Gajraj ; Darji, Anand D. ; Sarvaiya, Jignesh N. ; Patnaik, Suprva</creator><creatorcontrib>Singh, Gajraj ; Darji, Anand D. ; Sarvaiya, Jignesh N. ; Patnaik, Suprva</creatorcontrib><description>The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential process: identification of end-diastole (ED) and end-systole (ES) frames (echo phase detection) followed by the left ventricle ejection fraction (LVEF) prediction. To precisely describe cardiac function, proper attention must be given to spatial and temporal information and their interaction. Several deep learning (i.e., convolution neural networks, recurrent neural networks, and transformer) techniques have recently been introduced but have largely ignored the spatial and temporal information interaction. To address this issue, this study introduces EchoPhaseFormer, a transformer-based solution for echo phase detection (EPD) and LVEF prediction. A 3D convolution stemming is used to get the 3D patches from the echo sequence to retain the temporal information. The EchoPhaseFormer has an echo phase former block consisting of a conditional positional encoder and a phase self-attention module that ensures the spatial–temporal information extraction and their interaction. The EchoPhaseFormer outperformed the state-of-the-art architectures for both tasks on the EchoNet dataset. We obtain an average absolute frame distance of 1.01 for ED frames and 1.04 for ES frames for EPD, respectively. Regarding LVEF prediction, we obtain a mean absolute error of 4.77, a root mean square error of 6.14, and an R2 score of 0.81.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-024-03249-7</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Cardiac function ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Computer vision ; Convolution ; Data Structures and Information Theory ; Diastole ; Echocardiography ; Ejection fraction ; Emerging Applications of Cyber-Physical System ; Frames ; Function analysis ; Information retrieval ; Information Systems and Communication Service ; Magnetic resonance imaging ; Neural networks ; Original Research ; Pattern Recognition and Graphics ; Recurrent neural networks ; Software Engineering/Programming and Operating Systems ; Spatiotemporal data ; Stroke volume ; Systole ; Two dimensional analysis ; Ultrasonic imaging ; Vision ; Vision systems</subject><ispartof>SN computer science, 2024-09, Vol.5 (7), p.878, Article 878</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1157-ac508bd8455cfd50fc3f4ca7ede1b5d09c547bf46487ed794e229a262fdcdbfc3</cites><orcidid>0000-0003-3606-4439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-024-03249-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42979-024-03249-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Singh, Gajraj</creatorcontrib><creatorcontrib>Darji, Anand D.</creatorcontrib><creatorcontrib>Sarvaiya, Jignesh N.</creatorcontrib><creatorcontrib>Patnaik, Suprva</creatorcontrib><title>EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential process: identification of end-diastole (ED) and end-systole (ES) frames (echo phase detection) followed by the left ventricle ejection fraction (LVEF) prediction. To precisely describe cardiac function, proper attention must be given to spatial and temporal information and their interaction. Several deep learning (i.e., convolution neural networks, recurrent neural networks, and transformer) techniques have recently been introduced but have largely ignored the spatial and temporal information interaction. To address this issue, this study introduces EchoPhaseFormer, a transformer-based solution for echo phase detection (EPD) and LVEF prediction. A 3D convolution stemming is used to get the 3D patches from the echo sequence to retain the temporal information. The EchoPhaseFormer has an echo phase former block consisting of a conditional positional encoder and a phase self-attention module that ensures the spatial–temporal information extraction and their interaction. The EchoPhaseFormer outperformed the state-of-the-art architectures for both tasks on the EchoNet dataset. We obtain an average absolute frame distance of 1.01 for ED frames and 1.04 for ES frames for EPD, respectively. Regarding LVEF prediction, we obtain a mean absolute error of 4.77, a root mean square error of 6.14, and an R2 score of 0.81.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Cardiac function</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Data Structures and Information Theory</subject><subject>Diastole</subject><subject>Echocardiography</subject><subject>Ejection fraction</subject><subject>Emerging Applications of Cyber-Physical System</subject><subject>Frames</subject><subject>Function analysis</subject><subject>Information retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Magnetic resonance imaging</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Recurrent neural networks</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Spatiotemporal data</subject><subject>Stroke volume</subject><subject>Systole</subject><subject>Two dimensional analysis</subject><subject>Ultrasonic imaging</subject><subject>Vision</subject><subject>Vision systems</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EElXpH2CyxBy4duw4YSt9AFIlGMqILMePNlUbF7sd-u9xEySYmO7rO0dXB6FbAvcEQDxERitRZUBZBjllVSYu0IAWBcnKCsTln_4ajWLcAADlwFjBB-hzptf-fa2infuws-ERj_EyqDa6bsRP6WLwGcIdhaf2YPWh8S1WrcHjVm1PsYm4aTGddpxWwTR-FdR-fbpBV05tox391CH6mM-Wk5ds8fb8OhkvMk0IF5nSHMralIxz7QwHp3PHtBLWWFJzA5XmTNSOFaxMO1ExS2mlaEGd0aZO9BDd9b774L-ONh7kxh9D-i3KnADLGWcMEkV7SgcfY7BO7kOzU-EkCchzkrJPUqYkZZekFEmU96KY4HZlw6_1P6pvWfJ2Wg</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Singh, Gajraj</creator><creator>Darji, Anand D.</creator><creator>Sarvaiya, Jignesh N.</creator><creator>Patnaik, Suprva</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-3606-4439</orcidid></search><sort><creationdate>20240913</creationdate><title>EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography</title><author>Singh, Gajraj ; Darji, Anand D. ; Sarvaiya, Jignesh N. ; Patnaik, Suprva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1157-ac508bd8455cfd50fc3f4ca7ede1b5d09c547bf46487ed794e229a262fdcdbfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Cardiac function</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Data Structures and Information Theory</topic><topic>Diastole</topic><topic>Echocardiography</topic><topic>Ejection fraction</topic><topic>Emerging Applications of Cyber-Physical System</topic><topic>Frames</topic><topic>Function analysis</topic><topic>Information retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Magnetic resonance imaging</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Recurrent neural networks</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Spatiotemporal data</topic><topic>Stroke volume</topic><topic>Systole</topic><topic>Two dimensional analysis</topic><topic>Ultrasonic imaging</topic><topic>Vision</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Gajraj</creatorcontrib><creatorcontrib>Darji, Anand D.</creatorcontrib><creatorcontrib>Sarvaiya, Jignesh N.</creatorcontrib><creatorcontrib>Patnaik, Suprva</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Gajraj</au><au>Darji, Anand D.</au><au>Sarvaiya, Jignesh N.</au><au>Patnaik, Suprva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2024-09-13</date><risdate>2024</risdate><volume>5</volume><issue>7</issue><spage>878</spage><pages>878-</pages><artnum>878</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>The accurate cardiac function analysis (i.e., ventricle/stroke volume and ejection fraction measurement) in 2D echocardiography is challenging because of the low-resolution nature of echo sequence and motion in cardiac structure. In an echo sequence, the cardiac function analysis is a sequential process: identification of end-diastole (ED) and end-systole (ES) frames (echo phase detection) followed by the left ventricle ejection fraction (LVEF) prediction. To precisely describe cardiac function, proper attention must be given to spatial and temporal information and their interaction. Several deep learning (i.e., convolution neural networks, recurrent neural networks, and transformer) techniques have recently been introduced but have largely ignored the spatial and temporal information interaction. To address this issue, this study introduces EchoPhaseFormer, a transformer-based solution for echo phase detection (EPD) and LVEF prediction. A 3D convolution stemming is used to get the 3D patches from the echo sequence to retain the temporal information. The EchoPhaseFormer has an echo phase former block consisting of a conditional positional encoder and a phase self-attention module that ensures the spatial–temporal information extraction and their interaction. The EchoPhaseFormer outperformed the state-of-the-art architectures for both tasks on the EchoNet dataset. We obtain an average absolute frame distance of 1.01 for ED frames and 1.04 for ES frames for EPD, respectively. Regarding LVEF prediction, we obtain a mean absolute error of 4.77, a root mean square error of 6.14, and an R2 score of 0.81.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-024-03249-7</doi><orcidid>https://orcid.org/0000-0003-3606-4439</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2661-8907
ispartof SN computer science, 2024-09, Vol.5 (7), p.878, Article 878
issn 2661-8907
2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_3104345440
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial neural networks
Automation
Cardiac function
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Computer vision
Convolution
Data Structures and Information Theory
Diastole
Echocardiography
Ejection fraction
Emerging Applications of Cyber-Physical System
Frames
Function analysis
Information retrieval
Information Systems and Communication Service
Magnetic resonance imaging
Neural networks
Original Research
Pattern Recognition and Graphics
Recurrent neural networks
Software Engineering/Programming and Operating Systems
Spatiotemporal data
Stroke volume
Systole
Two dimensional analysis
Ultrasonic imaging
Vision
Vision systems
title EchoPhaseFormer: A Transformer Based Echo Phase Detection and Analysis in 2D Echocardiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EchoPhaseFormer:%20A%20Transformer%20Based%20Echo%20Phase%20Detection%20and%20Analysis%20in%202D%20Echocardiography&rft.jtitle=SN%20computer%20science&rft.au=Singh,%20Gajraj&rft.date=2024-09-13&rft.volume=5&rft.issue=7&rft.spage=878&rft.pages=878-&rft.artnum=878&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-024-03249-7&rft_dat=%3Cproquest_cross%3E3104345440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104345440&rft_id=info:pmid/&rfr_iscdi=true