Hammering at the entropy: A GENERIC-guided approach to learning polymeric rheological constitutive equations using PINNs
We present a versatile framework that employs Physics-Informed Neural Networks (PINNs) to discover the entropic contribution that leads to the constitutive equation for the extra-stress in rheological models of polymer solutions. In this framework the training of the Neural Network is guided by an e...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | David Nieto Simavilla Bonfanti, Andrea Imanol García de Beristain Español, Pep Ellero, Marco |
description | We present a versatile framework that employs Physics-Informed Neural Networks (PINNs) to discover the entropic contribution that leads to the constitutive equation for the extra-stress in rheological models of polymer solutions. In this framework the training of the Neural Network is guided by an evolution equation for the conformation tensor which is GENERIC-compliant. We compare two training methodologies for the data-driven PINN constitutive models: one trained on data from the analytical solution of the Oldroyd-B model under steady-state rheometric flows (PINN-rheometric), and another trained on in-silico data generated from complex flow CFD simulations around a cylinder that use the Oldroyd-B model (PINN-complex). The capacity of the PINN models to provide good predictions are evaluated by comparison with CFD simulations using the underlying Oldroyd-B model as a reference. Both models are capable of predicting flow behavior in transient and complex conditions; however, the PINN-complex model, trained on a broader range of mixed flow data, outperforms the PINN-rheometric model in complex flow scenarios. The geometry agnostic character of our methodology allows us to apply the learned PINN models to flows with different topologies than the ones used for training. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3104283306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104283306</sourcerecordid><originalsourceid>FETCH-proquest_journals_31042833063</originalsourceid><addsrcrecordid>eNqNjcsKwjAURIMgWNR_uOC6EBMfxZ2U-tgUEfcSamxT0qRNbkT_3hb8AFcDM3NmRiRinC_jZMXYhMy9rymlbLNl6zWPyPskmkY6ZUoQCFhJkAadbT872MMxy7PrOY3LoB7yAaJtnRVFBWhBS-HMQLVWf4aBAlwlrbalKoSGwhqPCgOqV7_YBYGqdyD4Abmc89zPyPgptJfzn07J4pDd0lPcf3RBerzXNjjTR3e-pCuWcE43_L_WFyHUTYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104283306</pqid></control><display><type>article</type><title>Hammering at the entropy: A GENERIC-guided approach to learning polymeric rheological constitutive equations using PINNs</title><source>Free E- Journals</source><creator>David Nieto Simavilla ; Bonfanti, Andrea ; Imanol García de Beristain ; Español, Pep ; Ellero, Marco</creator><creatorcontrib>David Nieto Simavilla ; Bonfanti, Andrea ; Imanol García de Beristain ; Español, Pep ; Ellero, Marco</creatorcontrib><description>We present a versatile framework that employs Physics-Informed Neural Networks (PINNs) to discover the entropic contribution that leads to the constitutive equation for the extra-stress in rheological models of polymer solutions. In this framework the training of the Neural Network is guided by an evolution equation for the conformation tensor which is GENERIC-compliant. We compare two training methodologies for the data-driven PINN constitutive models: one trained on data from the analytical solution of the Oldroyd-B model under steady-state rheometric flows (PINN-rheometric), and another trained on in-silico data generated from complex flow CFD simulations around a cylinder that use the Oldroyd-B model (PINN-complex). The capacity of the PINN models to provide good predictions are evaluated by comparison with CFD simulations using the underlying Oldroyd-B model as a reference. Both models are capable of predicting flow behavior in transient and complex conditions; however, the PINN-complex model, trained on a broader range of mixed flow data, outperforms the PINN-rheometric model in complex flow scenarios. The geometry agnostic character of our methodology allows us to apply the learned PINN models to flows with different topologies than the ones used for training.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constitutive equations ; Constitutive models ; Constitutive relationships ; Equilibrium flow ; Exact solutions ; Mathematical models ; Neural networks ; Predictions ; Rheological properties ; Rheology ; Rheometry ; Steady state models ; Tensors ; Topology</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>David Nieto Simavilla</creatorcontrib><creatorcontrib>Bonfanti, Andrea</creatorcontrib><creatorcontrib>Imanol García de Beristain</creatorcontrib><creatorcontrib>Español, Pep</creatorcontrib><creatorcontrib>Ellero, Marco</creatorcontrib><title>Hammering at the entropy: A GENERIC-guided approach to learning polymeric rheological constitutive equations using PINNs</title><title>arXiv.org</title><description>We present a versatile framework that employs Physics-Informed Neural Networks (PINNs) to discover the entropic contribution that leads to the constitutive equation for the extra-stress in rheological models of polymer solutions. In this framework the training of the Neural Network is guided by an evolution equation for the conformation tensor which is GENERIC-compliant. We compare two training methodologies for the data-driven PINN constitutive models: one trained on data from the analytical solution of the Oldroyd-B model under steady-state rheometric flows (PINN-rheometric), and another trained on in-silico data generated from complex flow CFD simulations around a cylinder that use the Oldroyd-B model (PINN-complex). The capacity of the PINN models to provide good predictions are evaluated by comparison with CFD simulations using the underlying Oldroyd-B model as a reference. Both models are capable of predicting flow behavior in transient and complex conditions; however, the PINN-complex model, trained on a broader range of mixed flow data, outperforms the PINN-rheometric model in complex flow scenarios. The geometry agnostic character of our methodology allows us to apply the learned PINN models to flows with different topologies than the ones used for training.</description><subject>Constitutive equations</subject><subject>Constitutive models</subject><subject>Constitutive relationships</subject><subject>Equilibrium flow</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rheometry</subject><subject>Steady state models</subject><subject>Tensors</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAURIMgWNR_uOC6EBMfxZ2U-tgUEfcSamxT0qRNbkT_3hb8AFcDM3NmRiRinC_jZMXYhMy9rymlbLNl6zWPyPskmkY6ZUoQCFhJkAadbT872MMxy7PrOY3LoB7yAaJtnRVFBWhBS-HMQLVWf4aBAlwlrbalKoSGwhqPCgOqV7_YBYGqdyD4Abmc89zPyPgptJfzn07J4pDd0lPcf3RBerzXNjjTR3e-pCuWcE43_L_WFyHUTYU</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>David Nieto Simavilla</creator><creator>Bonfanti, Andrea</creator><creator>Imanol García de Beristain</creator><creator>Español, Pep</creator><creator>Ellero, Marco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240911</creationdate><title>Hammering at the entropy: A GENERIC-guided approach to learning polymeric rheological constitutive equations using PINNs</title><author>David Nieto Simavilla ; Bonfanti, Andrea ; Imanol García de Beristain ; Español, Pep ; Ellero, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31042833063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constitutive equations</topic><topic>Constitutive models</topic><topic>Constitutive relationships</topic><topic>Equilibrium flow</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rheometry</topic><topic>Steady state models</topic><topic>Tensors</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>David Nieto Simavilla</creatorcontrib><creatorcontrib>Bonfanti, Andrea</creatorcontrib><creatorcontrib>Imanol García de Beristain</creatorcontrib><creatorcontrib>Español, Pep</creatorcontrib><creatorcontrib>Ellero, Marco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David Nieto Simavilla</au><au>Bonfanti, Andrea</au><au>Imanol García de Beristain</au><au>Español, Pep</au><au>Ellero, Marco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hammering at the entropy: A GENERIC-guided approach to learning polymeric rheological constitutive equations using PINNs</atitle><jtitle>arXiv.org</jtitle><date>2024-09-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a versatile framework that employs Physics-Informed Neural Networks (PINNs) to discover the entropic contribution that leads to the constitutive equation for the extra-stress in rheological models of polymer solutions. In this framework the training of the Neural Network is guided by an evolution equation for the conformation tensor which is GENERIC-compliant. We compare two training methodologies for the data-driven PINN constitutive models: one trained on data from the analytical solution of the Oldroyd-B model under steady-state rheometric flows (PINN-rheometric), and another trained on in-silico data generated from complex flow CFD simulations around a cylinder that use the Oldroyd-B model (PINN-complex). The capacity of the PINN models to provide good predictions are evaluated by comparison with CFD simulations using the underlying Oldroyd-B model as a reference. Both models are capable of predicting flow behavior in transient and complex conditions; however, the PINN-complex model, trained on a broader range of mixed flow data, outperforms the PINN-rheometric model in complex flow scenarios. The geometry agnostic character of our methodology allows us to apply the learned PINN models to flows with different topologies than the ones used for training.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3104283306 |
source | Free E- Journals |
subjects | Constitutive equations Constitutive models Constitutive relationships Equilibrium flow Exact solutions Mathematical models Neural networks Predictions Rheological properties Rheology Rheometry Steady state models Tensors Topology |
title | Hammering at the entropy: A GENERIC-guided approach to learning polymeric rheological constitutive equations using PINNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hammering%20at%20the%20entropy:%20A%20GENERIC-guided%20approach%20to%20learning%20polymeric%20rheological%20constitutive%20equations%20using%20PINNs&rft.jtitle=arXiv.org&rft.au=David%20Nieto%20Simavilla&rft.date=2024-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3104283306%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104283306&rft_id=info:pmid/&rfr_iscdi=true |