Generalization Error Bound for Quantum Machine Learning in NISQ Era -- A Survey
Despite the mounting anticipation for the quantum revolution, the success of Quantum Machine Learning (QML) in the Noisy Intermediate-Scale Quantum (NISQ) era hinges on a largely unexplored factor: the generalization error bound, a cornerstone of robust and reliable machine learning models. Current...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Khanal, Bikram Rivas, Pablo Sanjel, Arun Korn Sooksatra Quevedo, Ernesto Rodriguez, Alejandro |
description | Despite the mounting anticipation for the quantum revolution, the success of Quantum Machine Learning (QML) in the Noisy Intermediate-Scale Quantum (NISQ) era hinges on a largely unexplored factor: the generalization error bound, a cornerstone of robust and reliable machine learning models. Current QML research, while exploring novel algorithms and applications extensively, is predominantly situated in the context of noise-free, ideal quantum computers. However, Quantum Circuit (QC) operations in NISQ-era devices are susceptible to various noise sources and errors. In this article, we conduct a Systematic Mapping Study (SMS) to explore the state-of-the-art generalization bound for supervised QML in NISQ-era and analyze the latest practices in the field. Our study systematically summarizes the existing computational platforms with quantum hardware, datasets, optimization techniques, and the common properties of the bounds found in the literature. We further present the performance accuracy of various approaches in classical benchmark datasets like the MNIST and IRIS datasets. The SMS also highlights the limitations and challenges in QML in the NISQ era and discusses future research directions to advance the field. Using a detailed Boolean operators query in five reliable indexers, we collected 544 papers and filtered them to a small set of 37 relevant articles. This filtration was done following the best practice of SMS with well-defined research questions and inclusion and exclusion criteria. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3104277578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104277578</sourcerecordid><originalsourceid>FETCH-proquest_journals_31042775783</originalsourceid><addsrcrecordid>eNqNi8sKwjAUBYMgWLT_cMF1IE1a061KfYAPSt2XoKmm1BtNG0G_3i78AFdnYOYMSMCFiGgacz4iYdvWjDE-kzxJRECOa43aqcZ8VGcsQuacdbCwHi9Q9ZR7hZ2_w16dbwY17LRyaPAKBuGwLfL-oIBSmEPh3Uu_J2RYqabV4W_HZLrKTssNfTj79Lrtytp6h70qRcRiLmUiU_Ff9QVlbjzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104277578</pqid></control><display><type>article</type><title>Generalization Error Bound for Quantum Machine Learning in NISQ Era -- A Survey</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Khanal, Bikram ; Rivas, Pablo ; Sanjel, Arun ; Korn Sooksatra ; Quevedo, Ernesto ; Rodriguez, Alejandro</creator><creatorcontrib>Khanal, Bikram ; Rivas, Pablo ; Sanjel, Arun ; Korn Sooksatra ; Quevedo, Ernesto ; Rodriguez, Alejandro</creatorcontrib><description>Despite the mounting anticipation for the quantum revolution, the success of Quantum Machine Learning (QML) in the Noisy Intermediate-Scale Quantum (NISQ) era hinges on a largely unexplored factor: the generalization error bound, a cornerstone of robust and reliable machine learning models. Current QML research, while exploring novel algorithms and applications extensively, is predominantly situated in the context of noise-free, ideal quantum computers. However, Quantum Circuit (QC) operations in NISQ-era devices are susceptible to various noise sources and errors. In this article, we conduct a Systematic Mapping Study (SMS) to explore the state-of-the-art generalization bound for supervised QML in NISQ-era and analyze the latest practices in the field. Our study systematically summarizes the existing computational platforms with quantum hardware, datasets, optimization techniques, and the common properties of the bounds found in the literature. We further present the performance accuracy of various approaches in classical benchmark datasets like the MNIST and IRIS datasets. The SMS also highlights the limitations and challenges in QML in the NISQ era and discusses future research directions to advance the field. Using a detailed Boolean operators query in five reliable indexers, we collected 544 papers and filtered them to a small set of 37 relevant articles. This filtration was done following the best practice of SMS with well-defined research questions and inclusion and exclusion criteria.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Best practice ; Datasets ; Machine learning ; Optimization techniques ; Quantum computers ; Quantum computing ; State-of-the-art reviews</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Khanal, Bikram</creatorcontrib><creatorcontrib>Rivas, Pablo</creatorcontrib><creatorcontrib>Sanjel, Arun</creatorcontrib><creatorcontrib>Korn Sooksatra</creatorcontrib><creatorcontrib>Quevedo, Ernesto</creatorcontrib><creatorcontrib>Rodriguez, Alejandro</creatorcontrib><title>Generalization Error Bound for Quantum Machine Learning in NISQ Era -- A Survey</title><title>arXiv.org</title><description>Despite the mounting anticipation for the quantum revolution, the success of Quantum Machine Learning (QML) in the Noisy Intermediate-Scale Quantum (NISQ) era hinges on a largely unexplored factor: the generalization error bound, a cornerstone of robust and reliable machine learning models. Current QML research, while exploring novel algorithms and applications extensively, is predominantly situated in the context of noise-free, ideal quantum computers. However, Quantum Circuit (QC) operations in NISQ-era devices are susceptible to various noise sources and errors. In this article, we conduct a Systematic Mapping Study (SMS) to explore the state-of-the-art generalization bound for supervised QML in NISQ-era and analyze the latest practices in the field. Our study systematically summarizes the existing computational platforms with quantum hardware, datasets, optimization techniques, and the common properties of the bounds found in the literature. We further present the performance accuracy of various approaches in classical benchmark datasets like the MNIST and IRIS datasets. The SMS also highlights the limitations and challenges in QML in the NISQ era and discusses future research directions to advance the field. Using a detailed Boolean operators query in five reliable indexers, we collected 544 papers and filtered them to a small set of 37 relevant articles. This filtration was done following the best practice of SMS with well-defined research questions and inclusion and exclusion criteria.</description><subject>Algorithms</subject><subject>Best practice</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Optimization techniques</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>State-of-the-art reviews</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKwjAUBYMgWLT_cMF1IE1a061KfYAPSt2XoKmm1BtNG0G_3i78AFdnYOYMSMCFiGgacz4iYdvWjDE-kzxJRECOa43aqcZ8VGcsQuacdbCwHi9Q9ZR7hZ2_w16dbwY17LRyaPAKBuGwLfL-oIBSmEPh3Uu_J2RYqabV4W_HZLrKTssNfTj79Lrtytp6h70qRcRiLmUiU_Ff9QVlbjzU</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Khanal, Bikram</creator><creator>Rivas, Pablo</creator><creator>Sanjel, Arun</creator><creator>Korn Sooksatra</creator><creator>Quevedo, Ernesto</creator><creator>Rodriguez, Alejandro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240911</creationdate><title>Generalization Error Bound for Quantum Machine Learning in NISQ Era -- A Survey</title><author>Khanal, Bikram ; Rivas, Pablo ; Sanjel, Arun ; Korn Sooksatra ; Quevedo, Ernesto ; Rodriguez, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31042775783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Best practice</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Optimization techniques</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>State-of-the-art reviews</topic><toplevel>online_resources</toplevel><creatorcontrib>Khanal, Bikram</creatorcontrib><creatorcontrib>Rivas, Pablo</creatorcontrib><creatorcontrib>Sanjel, Arun</creatorcontrib><creatorcontrib>Korn Sooksatra</creatorcontrib><creatorcontrib>Quevedo, Ernesto</creatorcontrib><creatorcontrib>Rodriguez, Alejandro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanal, Bikram</au><au>Rivas, Pablo</au><au>Sanjel, Arun</au><au>Korn Sooksatra</au><au>Quevedo, Ernesto</au><au>Rodriguez, Alejandro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalization Error Bound for Quantum Machine Learning in NISQ Era -- A Survey</atitle><jtitle>arXiv.org</jtitle><date>2024-09-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Despite the mounting anticipation for the quantum revolution, the success of Quantum Machine Learning (QML) in the Noisy Intermediate-Scale Quantum (NISQ) era hinges on a largely unexplored factor: the generalization error bound, a cornerstone of robust and reliable machine learning models. Current QML research, while exploring novel algorithms and applications extensively, is predominantly situated in the context of noise-free, ideal quantum computers. However, Quantum Circuit (QC) operations in NISQ-era devices are susceptible to various noise sources and errors. In this article, we conduct a Systematic Mapping Study (SMS) to explore the state-of-the-art generalization bound for supervised QML in NISQ-era and analyze the latest practices in the field. Our study systematically summarizes the existing computational platforms with quantum hardware, datasets, optimization techniques, and the common properties of the bounds found in the literature. We further present the performance accuracy of various approaches in classical benchmark datasets like the MNIST and IRIS datasets. The SMS also highlights the limitations and challenges in QML in the NISQ era and discusses future research directions to advance the field. Using a detailed Boolean operators query in five reliable indexers, we collected 544 papers and filtered them to a small set of 37 relevant articles. This filtration was done following the best practice of SMS with well-defined research questions and inclusion and exclusion criteria.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3104277578 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Algorithms Best practice Datasets Machine learning Optimization techniques Quantum computers Quantum computing State-of-the-art reviews |
title | Generalization Error Bound for Quantum Machine Learning in NISQ Era -- A Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalization%20Error%20Bound%20for%20Quantum%20Machine%20Learning%20in%20NISQ%20Era%20--%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Khanal,%20Bikram&rft.date=2024-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3104277578%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104277578&rft_id=info:pmid/&rfr_iscdi=true |