Profiling checkpointing schedules in adjoint ST-AD
Checkpointing is a cornerstone of data-flow reversal in adjoint algorithmic differentiation. Checkpointing is a storage/recomputation trade-off that can be applied at different levels, one of which being the call tree. We are looking for good placements of checkpoints onto the call tree of a given a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hascoët, Laurent Bouchot, Jean-Luc Shreyas Sunil Gaikwad Sri Hari Krishna Narayanan Hückelheim, Jan |
description | Checkpointing is a cornerstone of data-flow reversal in adjoint algorithmic differentiation. Checkpointing is a storage/recomputation trade-off that can be applied at different levels, one of which being the call tree. We are looking for good placements of checkpoints onto the call tree of a given application, to reduce run time and memory footprint of its adjoint. There is no known optimal solution to this problem other than a combinatorial search on all placements. We propose a heuristics based on run-time profiling of the adjoint code. We describe implementation of this profiling tool in an existing source-transformation AD tool. We demonstrate the interest of this approach on test cases taken from the MITgcm ocean and atmospheric global circulation model. We discuss the limitations of our approach and propose directions to lift them. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3104234316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104234316</sourcerecordid><originalsourceid>FETCH-proquest_journals_31042343163</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCijKT8vMycxLV0jOSE3OLsjPzCsB8YqB3JTSnNRihcw8hcSULJC4QnCIrqMLDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxsamBgZmxgbmhkTpwoA0hgzdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104234316</pqid></control><display><type>article</type><title>Profiling checkpointing schedules in adjoint ST-AD</title><source>Free E- Journals</source><creator>Hascoët, Laurent ; Bouchot, Jean-Luc ; Shreyas Sunil Gaikwad ; Sri Hari Krishna Narayanan ; Hückelheim, Jan</creator><creatorcontrib>Hascoët, Laurent ; Bouchot, Jean-Luc ; Shreyas Sunil Gaikwad ; Sri Hari Krishna Narayanan ; Hückelheim, Jan</creatorcontrib><description>Checkpointing is a cornerstone of data-flow reversal in adjoint algorithmic differentiation. Checkpointing is a storage/recomputation trade-off that can be applied at different levels, one of which being the call tree. We are looking for good placements of checkpoints onto the call tree of a given application, to reduce run time and memory footprint of its adjoint. There is no known optimal solution to this problem other than a combinatorial search on all placements. We propose a heuristics based on run-time profiling of the adjoint code. We describe implementation of this profiling tool in an existing source-transformation AD tool. We demonstrate the interest of this approach on test cases taken from the MITgcm ocean and atmospheric global circulation model. We discuss the limitations of our approach and propose directions to lift them.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Checkpointing ; Combinatorial analysis</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hascoët, Laurent</creatorcontrib><creatorcontrib>Bouchot, Jean-Luc</creatorcontrib><creatorcontrib>Shreyas Sunil Gaikwad</creatorcontrib><creatorcontrib>Sri Hari Krishna Narayanan</creatorcontrib><creatorcontrib>Hückelheim, Jan</creatorcontrib><title>Profiling checkpointing schedules in adjoint ST-AD</title><title>arXiv.org</title><description>Checkpointing is a cornerstone of data-flow reversal in adjoint algorithmic differentiation. Checkpointing is a storage/recomputation trade-off that can be applied at different levels, one of which being the call tree. We are looking for good placements of checkpoints onto the call tree of a given application, to reduce run time and memory footprint of its adjoint. There is no known optimal solution to this problem other than a combinatorial search on all placements. We propose a heuristics based on run-time profiling of the adjoint code. We describe implementation of this profiling tool in an existing source-transformation AD tool. We demonstrate the interest of this approach on test cases taken from the MITgcm ocean and atmospheric global circulation model. We discuss the limitations of our approach and propose directions to lift them.</description><subject>Checkpointing</subject><subject>Combinatorial analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCijKT8vMycxLV0jOSE3OLsjPzCsB8YqB3JTSnNRihcw8hcSULJC4QnCIrqMLDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxsamBgZmxgbmhkTpwoA0hgzdg</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Hascoët, Laurent</creator><creator>Bouchot, Jean-Luc</creator><creator>Shreyas Sunil Gaikwad</creator><creator>Sri Hari Krishna Narayanan</creator><creator>Hückelheim, Jan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240912</creationdate><title>Profiling checkpointing schedules in adjoint ST-AD</title><author>Hascoët, Laurent ; Bouchot, Jean-Luc ; Shreyas Sunil Gaikwad ; Sri Hari Krishna Narayanan ; Hückelheim, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31042343163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Checkpointing</topic><topic>Combinatorial analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Hascoët, Laurent</creatorcontrib><creatorcontrib>Bouchot, Jean-Luc</creatorcontrib><creatorcontrib>Shreyas Sunil Gaikwad</creatorcontrib><creatorcontrib>Sri Hari Krishna Narayanan</creatorcontrib><creatorcontrib>Hückelheim, Jan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hascoët, Laurent</au><au>Bouchot, Jean-Luc</au><au>Shreyas Sunil Gaikwad</au><au>Sri Hari Krishna Narayanan</au><au>Hückelheim, Jan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Profiling checkpointing schedules in adjoint ST-AD</atitle><jtitle>arXiv.org</jtitle><date>2024-09-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Checkpointing is a cornerstone of data-flow reversal in adjoint algorithmic differentiation. Checkpointing is a storage/recomputation trade-off that can be applied at different levels, one of which being the call tree. We are looking for good placements of checkpoints onto the call tree of a given application, to reduce run time and memory footprint of its adjoint. There is no known optimal solution to this problem other than a combinatorial search on all placements. We propose a heuristics based on run-time profiling of the adjoint code. We describe implementation of this profiling tool in an existing source-transformation AD tool. We demonstrate the interest of this approach on test cases taken from the MITgcm ocean and atmospheric global circulation model. We discuss the limitations of our approach and propose directions to lift them.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3104234316 |
source | Free E- Journals |
subjects | Checkpointing Combinatorial analysis |
title | Profiling checkpointing schedules in adjoint ST-AD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Profiling%20checkpointing%20schedules%20in%20adjoint%20ST-AD&rft.jtitle=arXiv.org&rft.au=Hasco%C3%ABt,%20Laurent&rft.date=2024-09-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3104234316%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104234316&rft_id=info:pmid/&rfr_iscdi=true |