Classification of white blood cell images using K-Medoids algorithm and comparison of accuracy in terms of CNN technique

In the proposed research, white blood cell images will be classified using the K-Medoids method and the CNN algorithm will be compared. There are 790 photos in the dataset-master image dataset, on which K-Medoids is used. For the categorization of white blood cell pictures, a Deep learning approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Latha, Nuka Pushpa, Senthilkumar, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2871
creator Latha, Nuka Pushpa
Senthilkumar, R.
description In the proposed research, white blood cell images will be classified using the K-Medoids method and the CNN algorithm will be compared. There are 790 photos in the dataset-master image dataset, on which K-Medoids is used. For the categorization of white blood cell pictures, a Deep learning approach that compares Convolutional Neural Network with K- Medoids has been suggested and developed. It was determined that each group had a sample size of 27 people. The categorization of pictures of blood cells was examined and documented for its correctness and sensitivity. When compared to a Convolutional Neural Network, K-Medoids classified blood cell pictures with the highest accuracy (91.8 percent) and the lowest mean error (86.4 percent). The classifiers have a significant difference of 0.05. K-Medoids Algorithm outperforms Convolutional Neural Network in the classification of blood cell pictures, according to a new research.
doi_str_mv 10.1063/5.0228283
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168552</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-dc7574a7d4bbccf0441e84d5c228cfff8620e39a4f1f3b7cc58e0516909dbd123</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqWw4A8ssUNKseNnlijiJUrZdMEucvxoXSVxsBNB_56UdnU1V0czmgHgFqMFRpw8sAXKc5lLcgZmmDGcCY75OZghVNAsp-TrElyltEMoL4SQM_BbNiol77xWgw8dDA7-bP1gYd2EYKC2TQN9qzY2wTH5bgPfsw9rgjcJqmYToh-2LVTdRIa2V9Gno4fSeoxK76Hv4GBjmw7PcrWahN52_nu01-DCqSbZm9Odg_Xz07p8zZafL2_l4zLrOSGZ0YIJqoShda21Q5RiK6lheiqpnXOS58iSQlGHHamF1kxaxDAvUGFqg3MyB3dH2z6GKTUN1S6MsZsSK4IRxVwydqDuj1TSfvgfourjVDvuK4yqw7AVq07Dkj8YLWuf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3104168552</pqid></control><display><type>conference_proceeding</type><title>Classification of white blood cell images using K-Medoids algorithm and comparison of accuracy in terms of CNN technique</title><source>AIP Journals Complete</source><creator>Latha, Nuka Pushpa ; Senthilkumar, R.</creator><contributor>Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</contributor><creatorcontrib>Latha, Nuka Pushpa ; Senthilkumar, R. ; Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</creatorcontrib><description>In the proposed research, white blood cell images will be classified using the K-Medoids method and the CNN algorithm will be compared. There are 790 photos in the dataset-master image dataset, on which K-Medoids is used. For the categorization of white blood cell pictures, a Deep learning approach that compares Convolutional Neural Network with K- Medoids has been suggested and developed. It was determined that each group had a sample size of 27 people. The categorization of pictures of blood cells was examined and documented for its correctness and sensitivity. When compared to a Convolutional Neural Network, K-Medoids classified blood cell pictures with the highest accuracy (91.8 percent) and the lowest mean error (86.4 percent). The classifiers have a significant difference of 0.05. K-Medoids Algorithm outperforms Convolutional Neural Network in the classification of blood cell pictures, according to a new research.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0228283</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Datasets ; Error correction ; Leukocytes ; Machine learning ; Pictures</subject><ispartof>AIP conference proceedings, 2024, Vol.2871 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0228283$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Prabu, R. Thandaiah</contributor><contributor>Ramkumar, G.</contributor><contributor>G, Anitha</contributor><contributor>Vidhyalakshmi, S.</contributor><creatorcontrib>Latha, Nuka Pushpa</creatorcontrib><creatorcontrib>Senthilkumar, R.</creatorcontrib><title>Classification of white blood cell images using K-Medoids algorithm and comparison of accuracy in terms of CNN technique</title><title>AIP conference proceedings</title><description>In the proposed research, white blood cell images will be classified using the K-Medoids method and the CNN algorithm will be compared. There are 790 photos in the dataset-master image dataset, on which K-Medoids is used. For the categorization of white blood cell pictures, a Deep learning approach that compares Convolutional Neural Network with K- Medoids has been suggested and developed. It was determined that each group had a sample size of 27 people. The categorization of pictures of blood cells was examined and documented for its correctness and sensitivity. When compared to a Convolutional Neural Network, K-Medoids classified blood cell pictures with the highest accuracy (91.8 percent) and the lowest mean error (86.4 percent). The classifiers have a significant difference of 0.05. K-Medoids Algorithm outperforms Convolutional Neural Network in the classification of blood cell pictures, according to a new research.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Datasets</subject><subject>Error correction</subject><subject>Leukocytes</subject><subject>Machine learning</subject><subject>Pictures</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAURC0EEqWw4A8ssUNKseNnlijiJUrZdMEucvxoXSVxsBNB_56UdnU1V0czmgHgFqMFRpw8sAXKc5lLcgZmmDGcCY75OZghVNAsp-TrElyltEMoL4SQM_BbNiol77xWgw8dDA7-bP1gYd2EYKC2TQN9qzY2wTH5bgPfsw9rgjcJqmYToh-2LVTdRIa2V9Gno4fSeoxK76Hv4GBjmw7PcrWahN52_nu01-DCqSbZm9Odg_Xz07p8zZafL2_l4zLrOSGZ0YIJqoShda21Q5RiK6lheiqpnXOS58iSQlGHHamF1kxaxDAvUGFqg3MyB3dH2z6GKTUN1S6MsZsSK4IRxVwydqDuj1TSfvgfourjVDvuK4yqw7AVq07Dkj8YLWuf</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Latha, Nuka Pushpa</creator><creator>Senthilkumar, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240913</creationdate><title>Classification of white blood cell images using K-Medoids algorithm and comparison of accuracy in terms of CNN technique</title><author>Latha, Nuka Pushpa ; Senthilkumar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-dc7574a7d4bbccf0441e84d5c228cfff8620e39a4f1f3b7cc58e0516909dbd123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Datasets</topic><topic>Error correction</topic><topic>Leukocytes</topic><topic>Machine learning</topic><topic>Pictures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latha, Nuka Pushpa</creatorcontrib><creatorcontrib>Senthilkumar, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latha, Nuka Pushpa</au><au>Senthilkumar, R.</au><au>Prabu, R. Thandaiah</au><au>Ramkumar, G.</au><au>G, Anitha</au><au>Vidhyalakshmi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of white blood cell images using K-Medoids algorithm and comparison of accuracy in terms of CNN technique</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-13</date><risdate>2024</risdate><volume>2871</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the proposed research, white blood cell images will be classified using the K-Medoids method and the CNN algorithm will be compared. There are 790 photos in the dataset-master image dataset, on which K-Medoids is used. For the categorization of white blood cell pictures, a Deep learning approach that compares Convolutional Neural Network with K- Medoids has been suggested and developed. It was determined that each group had a sample size of 27 people. The categorization of pictures of blood cells was examined and documented for its correctness and sensitivity. When compared to a Convolutional Neural Network, K-Medoids classified blood cell pictures with the highest accuracy (91.8 percent) and the lowest mean error (86.4 percent). The classifiers have a significant difference of 0.05. K-Medoids Algorithm outperforms Convolutional Neural Network in the classification of blood cell pictures, according to a new research.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0228283</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2871 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3104168552
source AIP Journals Complete
subjects Algorithms
Artificial neural networks
Classification
Datasets
Error correction
Leukocytes
Machine learning
Pictures
title Classification of white blood cell images using K-Medoids algorithm and comparison of accuracy in terms of CNN technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20white%20blood%20cell%20images%20using%20K-Medoids%20algorithm%20and%20comparison%20of%20accuracy%20in%20terms%20of%20CNN%20technique&rft.btitle=AIP%20conference%20proceedings&rft.au=Latha,%20Nuka%20Pushpa&rft.date=2024-09-13&rft.volume=2871&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0228283&rft_dat=%3Cproquest_scita%3E3104168552%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168552&rft_id=info:pmid/&rfr_iscdi=true