Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate
This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2871 |
creator | Kumar, T. Sanjay Jagadeesh, P. |
description | This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group 1 and Group 2 had 140 photos. The computation was performed using G-power 0.8 and used a 95% confidence interval, an alpha of 0.05, and a beta of 0.2. We used 280 photos as our sample size for tumor cell identification and classification utilizing bone x-ray photographs. Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) categorize cancer cells in bone x-ray pictures with a sample size of 10. Compared to the Decision Tree (D-Tree) classifier, which had an accuracy rate of 91.0934%, the CNN classifier achieved a superior rate of 97.9034%. A p-value of 0.022 indicates that the research was statistically significant. Convolutional Neural Networks (CNNs) outperform Decision Trees (D-Trees) in effectively detecting and classifying malignancy cells from bone x-ray images. |
doi_str_mv | 10.1063/5.0228195 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168452</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-290f6c8641c077a067b00c38562f954a00601b252ae711c697324419f188aeb43</originalsourceid><addsrcrecordid>eNpNkEtLw0AQgBdRsFYP_oMFb0LqzD6To9T6gFJBevAWNsumpjTZurtRe_C_m9IePA3DfPP6CLlGmCAoficnwFiOhTwhI5QSM61QnZIRQCEyJvj7ObmIcQ3ACq3zEfl9cMnZ1PiO-ppWvnM09a0PtA6-PeQ_WTA72rRm5SLtY9Ot6HSxoHZjYmzqxgVqfbs1YV_4btIHfciWb7PZfyD5oX8b_Jejxto-GLujwSR3Sc5qs4nu6hjHZPk4W06fs_nr08v0fp5tFZcZK6BWNlcCLWhtQOkKwPJcKlYXUhgABVgxyYzTiFYVmjMhsKgxz42rBB-Tm8PY4YTP3sVUrn0fumFjyREEqlxINlC3ByraJpm9knIbhrfDrkQo93ZLWR7t8j8O6GsC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3104168452</pqid></control><display><type>conference_proceeding</type><title>Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate</title><source>AIP Journals Complete</source><creator>Kumar, T. Sanjay ; Jagadeesh, P.</creator><contributor>Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</contributor><creatorcontrib>Kumar, T. Sanjay ; Jagadeesh, P. ; Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</creatorcontrib><description>This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group 1 and Group 2 had 140 photos. The computation was performed using G-power 0.8 and used a 95% confidence interval, an alpha of 0.05, and a beta of 0.2. We used 280 photos as our sample size for tumor cell identification and classification utilizing bone x-ray photographs. Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) categorize cancer cells in bone x-ray pictures with a sample size of 10. Compared to the Decision Tree (D-Tree) classifier, which had an accuracy rate of 91.0934%, the CNN classifier achieved a superior rate of 97.9034%. A p-value of 0.022 indicates that the research was statistically significant. Convolutional Neural Networks (CNNs) outperform Decision Trees (D-Trees) in effectively detecting and classifying malignancy cells from bone x-ray images.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0228195</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alpha rays ; Artificial neural networks ; Cancer ; Classification ; Computer vision ; Decision trees ; Neural networks ; Tumors</subject><ispartof>AIP conference proceedings, 2024, Vol.2871 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0228195$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Prabu, R. Thandaiah</contributor><contributor>Ramkumar, G.</contributor><contributor>G, Anitha</contributor><contributor>Vidhyalakshmi, S.</contributor><creatorcontrib>Kumar, T. Sanjay</creatorcontrib><creatorcontrib>Jagadeesh, P.</creatorcontrib><title>Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate</title><title>AIP conference proceedings</title><description>This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group 1 and Group 2 had 140 photos. The computation was performed using G-power 0.8 and used a 95% confidence interval, an alpha of 0.05, and a beta of 0.2. We used 280 photos as our sample size for tumor cell identification and classification utilizing bone x-ray photographs. Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) categorize cancer cells in bone x-ray pictures with a sample size of 10. Compared to the Decision Tree (D-Tree) classifier, which had an accuracy rate of 91.0934%, the CNN classifier achieved a superior rate of 97.9034%. A p-value of 0.022 indicates that the research was statistically significant. Convolutional Neural Networks (CNNs) outperform Decision Trees (D-Trees) in effectively detecting and classifying malignancy cells from bone x-ray images.</description><subject>Alpha rays</subject><subject>Artificial neural networks</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Decision trees</subject><subject>Neural networks</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtLw0AQgBdRsFYP_oMFb0LqzD6To9T6gFJBevAWNsumpjTZurtRe_C_m9IePA3DfPP6CLlGmCAoficnwFiOhTwhI5QSM61QnZIRQCEyJvj7ObmIcQ3ACq3zEfl9cMnZ1PiO-ppWvnM09a0PtA6-PeQ_WTA72rRm5SLtY9Ot6HSxoHZjYmzqxgVqfbs1YV_4btIHfciWb7PZfyD5oX8b_Jejxto-GLujwSR3Sc5qs4nu6hjHZPk4W06fs_nr08v0fp5tFZcZK6BWNlcCLWhtQOkKwPJcKlYXUhgABVgxyYzTiFYVmjMhsKgxz42rBB-Tm8PY4YTP3sVUrn0fumFjyREEqlxINlC3ByraJpm9knIbhrfDrkQo93ZLWR7t8j8O6GsC</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Kumar, T. Sanjay</creator><creator>Jagadeesh, P.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240913</creationdate><title>Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate</title><author>Kumar, T. Sanjay ; Jagadeesh, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-290f6c8641c077a067b00c38562f954a00601b252ae711c697324419f188aeb43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alpha rays</topic><topic>Artificial neural networks</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Decision trees</topic><topic>Neural networks</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, T. Sanjay</creatorcontrib><creatorcontrib>Jagadeesh, P.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, T. Sanjay</au><au>Jagadeesh, P.</au><au>Prabu, R. Thandaiah</au><au>Ramkumar, G.</au><au>G, Anitha</au><au>Vidhyalakshmi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-13</date><risdate>2024</risdate><volume>2871</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group 1 and Group 2 had 140 photos. The computation was performed using G-power 0.8 and used a 95% confidence interval, an alpha of 0.05, and a beta of 0.2. We used 280 photos as our sample size for tumor cell identification and classification utilizing bone x-ray photographs. Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) categorize cancer cells in bone x-ray pictures with a sample size of 10. Compared to the Decision Tree (D-Tree) classifier, which had an accuracy rate of 91.0934%, the CNN classifier achieved a superior rate of 97.9034%. A p-value of 0.022 indicates that the research was statistically significant. Convolutional Neural Networks (CNNs) outperform Decision Trees (D-Trees) in effectively detecting and classifying malignancy cells from bone x-ray images.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0228195</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2871 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3104168452 |
source | AIP Journals Complete |
subjects | Alpha rays Artificial neural networks Cancer Classification Computer vision Decision trees Neural networks Tumors |
title | Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20bone%20tumor%20from%20bone%20x-ray%20images%20using%20CNN%20classifier%20comparing%20with%20D-TREE%20classifier%20to%20improve%20accuracy%20rate&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20T.%20Sanjay&rft.date=2024-09-13&rft.volume=2871&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0228195&rft_dat=%3Cproquest_scita%3E3104168452%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168452&rft_id=info:pmid/&rfr_iscdi=true |