Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate

This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kumar, T. Sanjay, Jagadeesh, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2871
creator Kumar, T. Sanjay
Jagadeesh, P.
description This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group 1 and Group 2 had 140 photos. The computation was performed using G-power 0.8 and used a 95% confidence interval, an alpha of 0.05, and a beta of 0.2. We used 280 photos as our sample size for tumor cell identification and classification utilizing bone x-ray photographs. Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) categorize cancer cells in bone x-ray pictures with a sample size of 10. Compared to the Decision Tree (D-Tree) classifier, which had an accuracy rate of 91.0934%, the CNN classifier achieved a superior rate of 97.9034%. A p-value of 0.022 indicates that the research was statistically significant. Convolutional Neural Networks (CNNs) outperform Decision Trees (D-Trees) in effectively detecting and classifying malignancy cells from bone x-ray images.
doi_str_mv 10.1063/5.0228195
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168452</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-290f6c8641c077a067b00c38562f954a00601b252ae711c697324419f188aeb43</originalsourceid><addsrcrecordid>eNpNkEtLw0AQgBdRsFYP_oMFb0LqzD6To9T6gFJBevAWNsumpjTZurtRe_C_m9IePA3DfPP6CLlGmCAoficnwFiOhTwhI5QSM61QnZIRQCEyJvj7ObmIcQ3ACq3zEfl9cMnZ1PiO-ppWvnM09a0PtA6-PeQ_WTA72rRm5SLtY9Ot6HSxoHZjYmzqxgVqfbs1YV_4btIHfciWb7PZfyD5oX8b_Jejxto-GLujwSR3Sc5qs4nu6hjHZPk4W06fs_nr08v0fp5tFZcZK6BWNlcCLWhtQOkKwPJcKlYXUhgABVgxyYzTiFYVmjMhsKgxz42rBB-Tm8PY4YTP3sVUrn0fumFjyREEqlxINlC3ByraJpm9knIbhrfDrkQo93ZLWR7t8j8O6GsC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3104168452</pqid></control><display><type>conference_proceeding</type><title>Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate</title><source>AIP Journals Complete</source><creator>Kumar, T. Sanjay ; Jagadeesh, P.</creator><contributor>Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</contributor><creatorcontrib>Kumar, T. Sanjay ; Jagadeesh, P. ; Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</creatorcontrib><description>This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group 1 and Group 2 had 140 photos. The computation was performed using G-power 0.8 and used a 95% confidence interval, an alpha of 0.05, and a beta of 0.2. We used 280 photos as our sample size for tumor cell identification and classification utilizing bone x-ray photographs. Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) categorize cancer cells in bone x-ray pictures with a sample size of 10. Compared to the Decision Tree (D-Tree) classifier, which had an accuracy rate of 91.0934%, the CNN classifier achieved a superior rate of 97.9034%. A p-value of 0.022 indicates that the research was statistically significant. Convolutional Neural Networks (CNNs) outperform Decision Trees (D-Trees) in effectively detecting and classifying malignancy cells from bone x-ray images.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0228195</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alpha rays ; Artificial neural networks ; Cancer ; Classification ; Computer vision ; Decision trees ; Neural networks ; Tumors</subject><ispartof>AIP conference proceedings, 2024, Vol.2871 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0228195$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Prabu, R. Thandaiah</contributor><contributor>Ramkumar, G.</contributor><contributor>G, Anitha</contributor><contributor>Vidhyalakshmi, S.</contributor><creatorcontrib>Kumar, T. Sanjay</creatorcontrib><creatorcontrib>Jagadeesh, P.</creatorcontrib><title>Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate</title><title>AIP conference proceedings</title><description>This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group 1 and Group 2 had 140 photos. The computation was performed using G-power 0.8 and used a 95% confidence interval, an alpha of 0.05, and a beta of 0.2. We used 280 photos as our sample size for tumor cell identification and classification utilizing bone x-ray photographs. Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) categorize cancer cells in bone x-ray pictures with a sample size of 10. Compared to the Decision Tree (D-Tree) classifier, which had an accuracy rate of 91.0934%, the CNN classifier achieved a superior rate of 97.9034%. A p-value of 0.022 indicates that the research was statistically significant. Convolutional Neural Networks (CNNs) outperform Decision Trees (D-Trees) in effectively detecting and classifying malignancy cells from bone x-ray images.</description><subject>Alpha rays</subject><subject>Artificial neural networks</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Decision trees</subject><subject>Neural networks</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtLw0AQgBdRsFYP_oMFb0LqzD6To9T6gFJBevAWNsumpjTZurtRe_C_m9IePA3DfPP6CLlGmCAoficnwFiOhTwhI5QSM61QnZIRQCEyJvj7ObmIcQ3ACq3zEfl9cMnZ1PiO-ppWvnM09a0PtA6-PeQ_WTA72rRm5SLtY9Ot6HSxoHZjYmzqxgVqfbs1YV_4btIHfciWb7PZfyD5oX8b_Jejxto-GLujwSR3Sc5qs4nu6hjHZPk4W06fs_nr08v0fp5tFZcZK6BWNlcCLWhtQOkKwPJcKlYXUhgABVgxyYzTiFYVmjMhsKgxz42rBB-Tm8PY4YTP3sVUrn0fumFjyREEqlxINlC3ByraJpm9knIbhrfDrkQo93ZLWR7t8j8O6GsC</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Kumar, T. Sanjay</creator><creator>Jagadeesh, P.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240913</creationdate><title>Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate</title><author>Kumar, T. Sanjay ; Jagadeesh, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-290f6c8641c077a067b00c38562f954a00601b252ae711c697324419f188aeb43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alpha rays</topic><topic>Artificial neural networks</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Decision trees</topic><topic>Neural networks</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, T. Sanjay</creatorcontrib><creatorcontrib>Jagadeesh, P.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, T. Sanjay</au><au>Jagadeesh, P.</au><au>Prabu, R. Thandaiah</au><au>Ramkumar, G.</au><au>G, Anitha</au><au>Vidhyalakshmi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-13</date><risdate>2024</risdate><volume>2871</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This study primarily aims to compare the performance of Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) in detecting cancer cells in x-ray images of the bone. This study makes use of data that is already accessible to the public in the NTHU Computer Vision Lab database. Both Group 1 and Group 2 had 140 photos. The computation was performed using G-power 0.8 and used a 95% confidence interval, an alpha of 0.05, and a beta of 0.2. We used 280 photos as our sample size for tumor cell identification and classification utilizing bone x-ray photographs. Convolutional Neural Networks (CNNs) and Decision Trees (D-Trees) categorize cancer cells in bone x-ray pictures with a sample size of 10. Compared to the Decision Tree (D-Tree) classifier, which had an accuracy rate of 91.0934%, the CNN classifier achieved a superior rate of 97.9034%. A p-value of 0.022 indicates that the research was statistically significant. Convolutional Neural Networks (CNNs) outperform Decision Trees (D-Trees) in effectively detecting and classifying malignancy cells from bone x-ray images.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0228195</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2871 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3104168452
source AIP Journals Complete
subjects Alpha rays
Artificial neural networks
Cancer
Classification
Computer vision
Decision trees
Neural networks
Tumors
title Detection of bone tumor from bone x-ray images using CNN classifier comparing with D-TREE classifier to improve accuracy rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20bone%20tumor%20from%20bone%20x-ray%20images%20using%20CNN%20classifier%20comparing%20with%20D-TREE%20classifier%20to%20improve%20accuracy%20rate&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20T.%20Sanjay&rft.date=2024-09-13&rft.volume=2871&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0228195&rft_dat=%3Cproquest_scita%3E3104168452%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168452&rft_id=info:pmid/&rfr_iscdi=true