Intelligent hybrid model of STS-NARX for prediction of bitcoin price

In this study, hybrid approaches are proposed to deal with the complex features of nonstationary and nonlinear behaviour. The proposed model takes into account some features, such as the seasonal component and the trend as an input data. However, to the best of the authors’ knowledge, statistical pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rashid, Nurazlina Abdul, Ismail, Mohd Tahir, Hamzalouh, Lubna, Majahar Ali, Majid Khan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3150
creator Rashid, Nurazlina Abdul
Ismail, Mohd Tahir
Hamzalouh, Lubna
Majahar Ali, Majid Khan
description In this study, hybrid approaches are proposed to deal with the complex features of nonstationary and nonlinear behaviour. The proposed model takes into account some features, such as the seasonal component and the trend as an input data. However, to the best of the authors’ knowledge, statistical patterns, including trend, seasonality and nonlinear behaviour, have rarely been studied simultaneously in bitcoin data. Therefore, a hybrid of structural time series (STS) and nonlinear autoregressive with exogenous input (NARX) is developed to predict bitcoin closing price. The results reveal that the optimal model is the hybrid STS, combining Local Level with Drift Deterministic Seasonal and NARX, featuring two inputs, one output, two delay values, and ten neurons in a hidden layer. This model demonstrates superior performance with the lowest values across all three measurement errors when compared to a single linear STS in bitcoin price prediction.
doi_str_mv 10.1063/5.0227875
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168419</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-302783c91fb6547ea0cae5dc7f05ef148939a43878c39435f5fa353a1e1c1e23</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoWKcP_oOCb0Jnbm_SNI9jOh0MBbuHvYU0TTSja2rbPezf27I9XTj3cM7HIeQR6Bxohi98TtNU5IJfkQg4h0RkkF2TiFLJkpTh7pbc9f2e0lQKkUfkdd0Mtq79j22G-PdUdr6KD6GydRxcXGyL5HPxvYtd6OK2s5U3gw_N9Cr9YIJvRtUbe09unK57-3C5M1Ks3rbLj2Tz9b5eLjZJmyFPkI5gaCS4MuNMWE2NtrwywlFuHbBcotQMc5EblAy5404jRw0WDNgUZ-TpnNp24e9o-0Htw7FrxkKFQBlkOQM5up7Prt74QU-4amQ86O6kgKppI8XVZSP8B7l3Vuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3104168419</pqid></control><display><type>conference_proceeding</type><title>Intelligent hybrid model of STS-NARX for prediction of bitcoin price</title><source>American Institute of Physics (AIP) Journals</source><creator>Rashid, Nurazlina Abdul ; Ismail, Mohd Tahir ; Hamzalouh, Lubna ; Majahar Ali, Majid Khan</creator><contributor>Ismail, Noriszura ; Burhanuddin, Nurul Afiqah ; Masseran, Nurulkamal ; Tajuddin, Razik Ridzuan Mohd ; Ismail, Eddie Shahril ; Ishak, Anuar Mohd ; Chien, Lee Khai</contributor><creatorcontrib>Rashid, Nurazlina Abdul ; Ismail, Mohd Tahir ; Hamzalouh, Lubna ; Majahar Ali, Majid Khan ; Ismail, Noriszura ; Burhanuddin, Nurul Afiqah ; Masseran, Nurulkamal ; Tajuddin, Razik Ridzuan Mohd ; Ismail, Eddie Shahril ; Ishak, Anuar Mohd ; Chien, Lee Khai</creatorcontrib><description>In this study, hybrid approaches are proposed to deal with the complex features of nonstationary and nonlinear behaviour. The proposed model takes into account some features, such as the seasonal component and the trend as an input data. However, to the best of the authors’ knowledge, statistical patterns, including trend, seasonality and nonlinear behaviour, have rarely been studied simultaneously in bitcoin data. Therefore, a hybrid of structural time series (STS) and nonlinear autoregressive with exogenous input (NARX) is developed to predict bitcoin closing price. The results reveal that the optimal model is the hybrid STS, combining Local Level with Drift Deterministic Seasonal and NARX, featuring two inputs, one output, two delay values, and ten neurons in a hidden layer. This model demonstrates superior performance with the lowest values across all three measurement errors when compared to a single linear STS in bitcoin price prediction.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0227875</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Digital currencies</subject><ispartof>AIP conference proceedings, 2024, Vol.3150 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0227875$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76130</link.rule.ids></links><search><contributor>Ismail, Noriszura</contributor><contributor>Burhanuddin, Nurul Afiqah</contributor><contributor>Masseran, Nurulkamal</contributor><contributor>Tajuddin, Razik Ridzuan Mohd</contributor><contributor>Ismail, Eddie Shahril</contributor><contributor>Ishak, Anuar Mohd</contributor><contributor>Chien, Lee Khai</contributor><creatorcontrib>Rashid, Nurazlina Abdul</creatorcontrib><creatorcontrib>Ismail, Mohd Tahir</creatorcontrib><creatorcontrib>Hamzalouh, Lubna</creatorcontrib><creatorcontrib>Majahar Ali, Majid Khan</creatorcontrib><title>Intelligent hybrid model of STS-NARX for prediction of bitcoin price</title><title>AIP conference proceedings</title><description>In this study, hybrid approaches are proposed to deal with the complex features of nonstationary and nonlinear behaviour. The proposed model takes into account some features, such as the seasonal component and the trend as an input data. However, to the best of the authors’ knowledge, statistical patterns, including trend, seasonality and nonlinear behaviour, have rarely been studied simultaneously in bitcoin data. Therefore, a hybrid of structural time series (STS) and nonlinear autoregressive with exogenous input (NARX) is developed to predict bitcoin closing price. The results reveal that the optimal model is the hybrid STS, combining Local Level with Drift Deterministic Seasonal and NARX, featuring two inputs, one output, two delay values, and ten neurons in a hidden layer. This model demonstrates superior performance with the lowest values across all three measurement errors when compared to a single linear STS in bitcoin price prediction.</description><subject>Digital currencies</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkFFLwzAUhYMoWKcP_oOCb0Jnbm_SNI9jOh0MBbuHvYU0TTSja2rbPezf27I9XTj3cM7HIeQR6Bxohi98TtNU5IJfkQg4h0RkkF2TiFLJkpTh7pbc9f2e0lQKkUfkdd0Mtq79j22G-PdUdr6KD6GydRxcXGyL5HPxvYtd6OK2s5U3gw_N9Cr9YIJvRtUbe09unK57-3C5M1Ks3rbLj2Tz9b5eLjZJmyFPkI5gaCS4MuNMWE2NtrwywlFuHbBcotQMc5EblAy5404jRw0WDNgUZ-TpnNp24e9o-0Htw7FrxkKFQBlkOQM5up7Prt74QU-4amQ86O6kgKppI8XVZSP8B7l3Vuw</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Rashid, Nurazlina Abdul</creator><creator>Ismail, Mohd Tahir</creator><creator>Hamzalouh, Lubna</creator><creator>Majahar Ali, Majid Khan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240913</creationdate><title>Intelligent hybrid model of STS-NARX for prediction of bitcoin price</title><author>Rashid, Nurazlina Abdul ; Ismail, Mohd Tahir ; Hamzalouh, Lubna ; Majahar Ali, Majid Khan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-302783c91fb6547ea0cae5dc7f05ef148939a43878c39435f5fa353a1e1c1e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Digital currencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Nurazlina Abdul</creatorcontrib><creatorcontrib>Ismail, Mohd Tahir</creatorcontrib><creatorcontrib>Hamzalouh, Lubna</creatorcontrib><creatorcontrib>Majahar Ali, Majid Khan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Nurazlina Abdul</au><au>Ismail, Mohd Tahir</au><au>Hamzalouh, Lubna</au><au>Majahar Ali, Majid Khan</au><au>Ismail, Noriszura</au><au>Burhanuddin, Nurul Afiqah</au><au>Masseran, Nurulkamal</au><au>Tajuddin, Razik Ridzuan Mohd</au><au>Ismail, Eddie Shahril</au><au>Ishak, Anuar Mohd</au><au>Chien, Lee Khai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent hybrid model of STS-NARX for prediction of bitcoin price</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-13</date><risdate>2024</risdate><volume>3150</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this study, hybrid approaches are proposed to deal with the complex features of nonstationary and nonlinear behaviour. The proposed model takes into account some features, such as the seasonal component and the trend as an input data. However, to the best of the authors’ knowledge, statistical patterns, including trend, seasonality and nonlinear behaviour, have rarely been studied simultaneously in bitcoin data. Therefore, a hybrid of structural time series (STS) and nonlinear autoregressive with exogenous input (NARX) is developed to predict bitcoin closing price. The results reveal that the optimal model is the hybrid STS, combining Local Level with Drift Deterministic Seasonal and NARX, featuring two inputs, one output, two delay values, and ten neurons in a hidden layer. This model demonstrates superior performance with the lowest values across all three measurement errors when compared to a single linear STS in bitcoin price prediction.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0227875</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3150 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3104168419
source American Institute of Physics (AIP) Journals
subjects Digital currencies
title Intelligent hybrid model of STS-NARX for prediction of bitcoin price
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20hybrid%20model%20of%20STS-NARX%20for%20prediction%20of%20bitcoin%20price&rft.btitle=AIP%20conference%20proceedings&rft.au=Rashid,%20Nurazlina%20Abdul&rft.date=2024-09-13&rft.volume=3150&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0227875&rft_dat=%3Cproquest_scita%3E3104168419%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168419&rft_id=info:pmid/&rfr_iscdi=true