Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate
Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence ra...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2871 |
creator | Kumar, T. Sanjay Jagadeesh, P. |
description | Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence range with alpha and beta values of 0.05 and 0.2, respectively. An analysis of bone x-ray images was conducted using G-power 0.8 to ascertain the likelihood of tumor cell identification and categorization. We used a total of 180 participants, 90 from Group 1 & 90 from Group 2. A combination of K-Nearest Neighbor (KNN) & Random Forest (RF) is employed, along with a sample size of 10 individuals, to identify and classify cancer cells in bone x-ray images. According to the results, the Novel K-Nearest Neighbor (KNN) classifier outperforms the Random Forest (RF) classifier with an accuracy rating of 95.2905. The study’s results are statistically significant (p=0.027). In conclusion, when it comes to classifying tumor cells from bone x-ray pictures, K-Nearest Neighbor (KNN) outperforms Random Forest (RF) in terms of accuracy. |
doi_str_mv | 10.1063/5.0228193 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168319</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-1b4401fe0901f993c11ae30e8d697fa25b8ad575d99b46deaf866b847d8fa79c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqUw8A8ssSGl2HH8NaLyKaqydGCzHMcuqZo42A7QnR-OqzKw3Ol079299wBwidEMI0Zu6AyVpcCSHIEJphQXnGF2DCYIyaooK_J2Cs5i3CBUSs7FBPzc2WRNan0PvYO17y1MY-cDdMF3h_q7CHoH206vbYRjbPs1fFkuodnqGFvX2gCN7wYd9o2vNr3DoPsmDzsfbEz_dcnnNUPwnxZqY8agzS6Lkz0HJ05vo734y1OwerhfzZ-Kxevj8_x2UQyMkALXVYWws0jmKCUxGGtLkBUNk9zpktZCN5TTRsq6Yo3VTjBWi4o3wmkuDZmCq8PabOFjzN7Uxo-hzxcVwajCTJAMbgquD6po2qT3ZNQQ8vdhpzBSe8iKqj_I5Bc_cnB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3104168319</pqid></control><display><type>conference_proceeding</type><title>Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate</title><source>AIP Journals Complete</source><creator>Kumar, T. Sanjay ; Jagadeesh, P.</creator><contributor>Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</contributor><creatorcontrib>Kumar, T. Sanjay ; Jagadeesh, P. ; Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</creatorcontrib><description>Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence range with alpha and beta values of 0.05 and 0.2, respectively. An analysis of bone x-ray images was conducted using G-power 0.8 to ascertain the likelihood of tumor cell identification and categorization. We used a total of 180 participants, 90 from Group 1 & 90 from Group 2. A combination of K-Nearest Neighbor (KNN) & Random Forest (RF) is employed, along with a sample size of 10 individuals, to identify and classify cancer cells in bone x-ray images. According to the results, the Novel K-Nearest Neighbor (KNN) classifier outperforms the Random Forest (RF) classifier with an accuracy rating of 95.2905. The study’s results are statistically significant (p=0.027). In conclusion, when it comes to classifying tumor cells from bone x-ray pictures, K-Nearest Neighbor (KNN) outperforms Random Forest (RF) in terms of accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0228193</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Alpha rays ; Classification ; Computer vision ; K-nearest neighbors algorithm ; Pictures ; Tumors</subject><ispartof>AIP conference proceedings, 2024, Vol.2871 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0228193$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Prabu, R. Thandaiah</contributor><contributor>Ramkumar, G.</contributor><contributor>G, Anitha</contributor><contributor>Vidhyalakshmi, S.</contributor><creatorcontrib>Kumar, T. Sanjay</creatorcontrib><creatorcontrib>Jagadeesh, P.</creatorcontrib><title>Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate</title><title>AIP conference proceedings</title><description>Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence range with alpha and beta values of 0.05 and 0.2, respectively. An analysis of bone x-ray images was conducted using G-power 0.8 to ascertain the likelihood of tumor cell identification and categorization. We used a total of 180 participants, 90 from Group 1 & 90 from Group 2. A combination of K-Nearest Neighbor (KNN) & Random Forest (RF) is employed, along with a sample size of 10 individuals, to identify and classify cancer cells in bone x-ray images. According to the results, the Novel K-Nearest Neighbor (KNN) classifier outperforms the Random Forest (RF) classifier with an accuracy rating of 95.2905. The study’s results are statistically significant (p=0.027). In conclusion, when it comes to classifying tumor cells from bone x-ray pictures, K-Nearest Neighbor (KNN) outperforms Random Forest (RF) in terms of accuracy.</description><subject>Accuracy</subject><subject>Alpha rays</subject><subject>Classification</subject><subject>Computer vision</subject><subject>K-nearest neighbors algorithm</subject><subject>Pictures</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAQhi0EEqUw8A8ssSGl2HH8NaLyKaqydGCzHMcuqZo42A7QnR-OqzKw3Ol079299wBwidEMI0Zu6AyVpcCSHIEJphQXnGF2DCYIyaooK_J2Cs5i3CBUSs7FBPzc2WRNan0PvYO17y1MY-cDdMF3h_q7CHoH206vbYRjbPs1fFkuodnqGFvX2gCN7wYd9o2vNr3DoPsmDzsfbEz_dcnnNUPwnxZqY8agzS6Lkz0HJ05vo734y1OwerhfzZ-Kxevj8_x2UQyMkALXVYWws0jmKCUxGGtLkBUNk9zpktZCN5TTRsq6Yo3VTjBWi4o3wmkuDZmCq8PabOFjzN7Uxo-hzxcVwajCTJAMbgquD6po2qT3ZNQQ8vdhpzBSe8iKqj_I5Bc_cnB6</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Kumar, T. Sanjay</creator><creator>Jagadeesh, P.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240913</creationdate><title>Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate</title><author>Kumar, T. Sanjay ; Jagadeesh, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-1b4401fe0901f993c11ae30e8d697fa25b8ad575d99b46deaf866b847d8fa79c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Alpha rays</topic><topic>Classification</topic><topic>Computer vision</topic><topic>K-nearest neighbors algorithm</topic><topic>Pictures</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, T. Sanjay</creatorcontrib><creatorcontrib>Jagadeesh, P.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, T. Sanjay</au><au>Jagadeesh, P.</au><au>Prabu, R. Thandaiah</au><au>Ramkumar, G.</au><au>G, Anitha</au><au>Vidhyalakshmi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-13</date><risdate>2024</risdate><volume>2871</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence range with alpha and beta values of 0.05 and 0.2, respectively. An analysis of bone x-ray images was conducted using G-power 0.8 to ascertain the likelihood of tumor cell identification and categorization. We used a total of 180 participants, 90 from Group 1 & 90 from Group 2. A combination of K-Nearest Neighbor (KNN) & Random Forest (RF) is employed, along with a sample size of 10 individuals, to identify and classify cancer cells in bone x-ray images. According to the results, the Novel K-Nearest Neighbor (KNN) classifier outperforms the Random Forest (RF) classifier with an accuracy rating of 95.2905. The study’s results are statistically significant (p=0.027). In conclusion, when it comes to classifying tumor cells from bone x-ray pictures, K-Nearest Neighbor (KNN) outperforms Random Forest (RF) in terms of accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0228193</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2871 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3104168319 |
source | AIP Journals Complete |
subjects | Accuracy Alpha rays Classification Computer vision K-nearest neighbors algorithm Pictures Tumors |
title | Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20bone%20tumor%20from%20bone%20x-ray%20images%20using%20KNN%20classifier%20comparing%20with%20random%20forest%20classifier%20to%20improve%20accuracy%20rate&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20T.%20Sanjay&rft.date=2024-09-13&rft.volume=2871&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0228193&rft_dat=%3Cproquest_scita%3E3104168319%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168319&rft_id=info:pmid/&rfr_iscdi=true |