Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate

Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kumar, T. Sanjay, Jagadeesh, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2871
creator Kumar, T. Sanjay
Jagadeesh, P.
description Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence range with alpha and beta values of 0.05 and 0.2, respectively. An analysis of bone x-ray images was conducted using G-power 0.8 to ascertain the likelihood of tumor cell identification and categorization. We used a total of 180 participants, 90 from Group 1 & 90 from Group 2. A combination of K-Nearest Neighbor (KNN) & Random Forest (RF) is employed, along with a sample size of 10 individuals, to identify and classify cancer cells in bone x-ray images. According to the results, the Novel K-Nearest Neighbor (KNN) classifier outperforms the Random Forest (RF) classifier with an accuracy rating of 95.2905. The study’s results are statistically significant (p=0.027). In conclusion, when it comes to classifying tumor cells from bone x-ray pictures, K-Nearest Neighbor (KNN) outperforms Random Forest (RF) in terms of accuracy.
doi_str_mv 10.1063/5.0228193
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168319</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-1b4401fe0901f993c11ae30e8d697fa25b8ad575d99b46deaf866b847d8fa79c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqUw8A8ssSGl2HH8NaLyKaqydGCzHMcuqZo42A7QnR-OqzKw3Ol079299wBwidEMI0Zu6AyVpcCSHIEJphQXnGF2DCYIyaooK_J2Cs5i3CBUSs7FBPzc2WRNan0PvYO17y1MY-cDdMF3h_q7CHoH206vbYRjbPs1fFkuodnqGFvX2gCN7wYd9o2vNr3DoPsmDzsfbEz_dcnnNUPwnxZqY8agzS6Lkz0HJ05vo734y1OwerhfzZ-Kxevj8_x2UQyMkALXVYWws0jmKCUxGGtLkBUNk9zpktZCN5TTRsq6Yo3VTjBWi4o3wmkuDZmCq8PabOFjzN7Uxo-hzxcVwajCTJAMbgquD6po2qT3ZNQQ8vdhpzBSe8iKqj_I5Bc_cnB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3104168319</pqid></control><display><type>conference_proceeding</type><title>Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate</title><source>AIP Journals Complete</source><creator>Kumar, T. Sanjay ; Jagadeesh, P.</creator><contributor>Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</contributor><creatorcontrib>Kumar, T. Sanjay ; Jagadeesh, P. ; Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</creatorcontrib><description>Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence range with alpha and beta values of 0.05 and 0.2, respectively. An analysis of bone x-ray images was conducted using G-power 0.8 to ascertain the likelihood of tumor cell identification and categorization. We used a total of 180 participants, 90 from Group 1 &amp; 90 from Group 2. A combination of K-Nearest Neighbor (KNN) &amp; Random Forest (RF) is employed, along with a sample size of 10 individuals, to identify and classify cancer cells in bone x-ray images. According to the results, the Novel K-Nearest Neighbor (KNN) classifier outperforms the Random Forest (RF) classifier with an accuracy rating of 95.2905. The study’s results are statistically significant (p=0.027). In conclusion, when it comes to classifying tumor cells from bone x-ray pictures, K-Nearest Neighbor (KNN) outperforms Random Forest (RF) in terms of accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0228193</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Alpha rays ; Classification ; Computer vision ; K-nearest neighbors algorithm ; Pictures ; Tumors</subject><ispartof>AIP conference proceedings, 2024, Vol.2871 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0228193$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Prabu, R. Thandaiah</contributor><contributor>Ramkumar, G.</contributor><contributor>G, Anitha</contributor><contributor>Vidhyalakshmi, S.</contributor><creatorcontrib>Kumar, T. Sanjay</creatorcontrib><creatorcontrib>Jagadeesh, P.</creatorcontrib><title>Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate</title><title>AIP conference proceedings</title><description>Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence range with alpha and beta values of 0.05 and 0.2, respectively. An analysis of bone x-ray images was conducted using G-power 0.8 to ascertain the likelihood of tumor cell identification and categorization. We used a total of 180 participants, 90 from Group 1 &amp; 90 from Group 2. A combination of K-Nearest Neighbor (KNN) &amp; Random Forest (RF) is employed, along with a sample size of 10 individuals, to identify and classify cancer cells in bone x-ray images. According to the results, the Novel K-Nearest Neighbor (KNN) classifier outperforms the Random Forest (RF) classifier with an accuracy rating of 95.2905. The study’s results are statistically significant (p=0.027). In conclusion, when it comes to classifying tumor cells from bone x-ray pictures, K-Nearest Neighbor (KNN) outperforms Random Forest (RF) in terms of accuracy.</description><subject>Accuracy</subject><subject>Alpha rays</subject><subject>Classification</subject><subject>Computer vision</subject><subject>K-nearest neighbors algorithm</subject><subject>Pictures</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAQhi0EEqUw8A8ssSGl2HH8NaLyKaqydGCzHMcuqZo42A7QnR-OqzKw3Ol079299wBwidEMI0Zu6AyVpcCSHIEJphQXnGF2DCYIyaooK_J2Cs5i3CBUSs7FBPzc2WRNan0PvYO17y1MY-cDdMF3h_q7CHoH206vbYRjbPs1fFkuodnqGFvX2gCN7wYd9o2vNr3DoPsmDzsfbEz_dcnnNUPwnxZqY8agzS6Lkz0HJ05vo734y1OwerhfzZ-Kxevj8_x2UQyMkALXVYWws0jmKCUxGGtLkBUNk9zpktZCN5TTRsq6Yo3VTjBWi4o3wmkuDZmCq8PabOFjzN7Uxo-hzxcVwajCTJAMbgquD6po2qT3ZNQQ8vdhpzBSe8iKqj_I5Bc_cnB6</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Kumar, T. Sanjay</creator><creator>Jagadeesh, P.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240913</creationdate><title>Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate</title><author>Kumar, T. Sanjay ; Jagadeesh, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-1b4401fe0901f993c11ae30e8d697fa25b8ad575d99b46deaf866b847d8fa79c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Alpha rays</topic><topic>Classification</topic><topic>Computer vision</topic><topic>K-nearest neighbors algorithm</topic><topic>Pictures</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, T. Sanjay</creatorcontrib><creatorcontrib>Jagadeesh, P.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, T. Sanjay</au><au>Jagadeesh, P.</au><au>Prabu, R. Thandaiah</au><au>Ramkumar, G.</au><au>G, Anitha</au><au>Vidhyalakshmi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-13</date><risdate>2024</risdate><volume>2871</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Finding a way to make KNN Classifier, instead of Random Forest Classifier, better at identifying bone tumors in x-ray pictures is the main goal of this study. The data used in this paper’s dataset is obtained from the NTHU Computer Vision Lab, which is open to the public. We used a 95% confidence range with alpha and beta values of 0.05 and 0.2, respectively. An analysis of bone x-ray images was conducted using G-power 0.8 to ascertain the likelihood of tumor cell identification and categorization. We used a total of 180 participants, 90 from Group 1 &amp; 90 from Group 2. A combination of K-Nearest Neighbor (KNN) &amp; Random Forest (RF) is employed, along with a sample size of 10 individuals, to identify and classify cancer cells in bone x-ray images. According to the results, the Novel K-Nearest Neighbor (KNN) classifier outperforms the Random Forest (RF) classifier with an accuracy rating of 95.2905. The study’s results are statistically significant (p=0.027). In conclusion, when it comes to classifying tumor cells from bone x-ray pictures, K-Nearest Neighbor (KNN) outperforms Random Forest (RF) in terms of accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0228193</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2871 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3104168319
source AIP Journals Complete
subjects Accuracy
Alpha rays
Classification
Computer vision
K-nearest neighbors algorithm
Pictures
Tumors
title Detection of bone tumor from bone x-ray images using KNN classifier comparing with random forest classifier to improve accuracy rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20bone%20tumor%20from%20bone%20x-ray%20images%20using%20KNN%20classifier%20comparing%20with%20random%20forest%20classifier%20to%20improve%20accuracy%20rate&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20T.%20Sanjay&rft.date=2024-09-13&rft.volume=2871&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0228193&rft_dat=%3Cproquest_scita%3E3104168319%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168319&rft_id=info:pmid/&rfr_iscdi=true