Analyzing skin wound texture with edge detection method using thermal threshold and comparing wound healing rate measurement with binarization
This effort will use the Novel Thermal threshold operator and compare it with Binarization in order to develop a novel edge detection method for gauging the pace of wound healing. Sections and Procedures: We apply two edge detection approaches, namely Binarization and Novel Thermal threshold, to det...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2871 |
creator | Raviteja, C. Priyadarshini, P. S. Uma |
description | This effort will use the Novel Thermal threshold operator and compare it with Binarization in order to develop a novel edge detection method for gauging the pace of wound healing. Sections and Procedures: We apply two edge detection approaches, namely Binarization and Novel Thermal threshold, to determine the wound healing rate. We used 80% of the pretest power to assess Group 1, which included twelve samples using Novel Thermal threshold, & Group 2, which included twelve samples utilizing binarization. The linearization technique had an accuracy rate of 88.10% and a wound healing rate of 0.38%, while the innovative thermal threshold edge detection method achieved a rate of 88.10%. A 0.006 (p |
doi_str_mv | 10.1063/5.0228030 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168251</sourcerecordid><originalsourceid>FETCH-LOGICAL-p630-14fb235675d25ec0cc6489c5f42a9ad6cfd4ae7c7de68804634b70c89c4ccd3</originalsourceid><addsrcrecordid>eNotkMtKw0AUhgdRsFYXvsGAOyF17kmWpXiDgiAu3IXpzEmTmpszE2r7ED6zienqcDjf_3H4EbqlZEGJ4g9yQRhLCCdnaEalpFGsqDpHM0JSETHBPy_Rlfc7Qlgax8kM_S4bXR2OZbPF_qts8L7tG4sD_ITeAd6XocBgt4AtBDChbBtcQyhai3s_ZkIBrtbVMB34oq0s1kPctHWn3XifdAXoatycDjDktR_cNTRh8m_KZoCPerRfo4tcVx5uTnOO3p8eP1Yv0frt-XW1XEed4iSiIt8wLlUsLZNgiDFKJKmRuWA61VaZ3AoNsYktqCQhQnGxiYkZEGGM5XN0N0k713734EO2a3s39OAzTomgKmGSDtT9RHlThv_nss6VtXaHjJJsLDuT2als_gcjIXVS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3104168251</pqid></control><display><type>conference_proceeding</type><title>Analyzing skin wound texture with edge detection method using thermal threshold and comparing wound healing rate measurement with binarization</title><source>AIP Journals Complete</source><creator>Raviteja, C. ; Priyadarshini, P. S. Uma</creator><contributor>Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</contributor><creatorcontrib>Raviteja, C. ; Priyadarshini, P. S. Uma ; Prabu, R. Thandaiah ; Ramkumar, G. ; G, Anitha ; Vidhyalakshmi, S.</creatorcontrib><description>This effort will use the Novel Thermal threshold operator and compare it with Binarization in order to develop a novel edge detection method for gauging the pace of wound healing. Sections and Procedures: We apply two edge detection approaches, namely Binarization and Novel Thermal threshold, to determine the wound healing rate. We used 80% of the pretest power to assess Group 1, which included twelve samples using Novel Thermal threshold, & Group 2, which included twelve samples utilizing binarization. The linearization technique had an accuracy rate of 88.10% and a wound healing rate of 0.38%, while the innovative thermal threshold edge detection method achieved a rate of 88.10%. A 0.006 (p<0.05) result indicated that both methods were statistically significant. Comparing the Novel Thermal threshold approach to the Binarization operator, the findings show that the former achieves much higher accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0228030</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Edge detection ; Statistical methods ; Wound healing</subject><ispartof>AIP conference proceedings, 2024, Vol.2871 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0228030$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76130</link.rule.ids></links><search><contributor>Prabu, R. Thandaiah</contributor><contributor>Ramkumar, G.</contributor><contributor>G, Anitha</contributor><contributor>Vidhyalakshmi, S.</contributor><creatorcontrib>Raviteja, C.</creatorcontrib><creatorcontrib>Priyadarshini, P. S. Uma</creatorcontrib><title>Analyzing skin wound texture with edge detection method using thermal threshold and comparing wound healing rate measurement with binarization</title><title>AIP conference proceedings</title><description>This effort will use the Novel Thermal threshold operator and compare it with Binarization in order to develop a novel edge detection method for gauging the pace of wound healing. Sections and Procedures: We apply two edge detection approaches, namely Binarization and Novel Thermal threshold, to determine the wound healing rate. We used 80% of the pretest power to assess Group 1, which included twelve samples using Novel Thermal threshold, & Group 2, which included twelve samples utilizing binarization. The linearization technique had an accuracy rate of 88.10% and a wound healing rate of 0.38%, while the innovative thermal threshold edge detection method achieved a rate of 88.10%. A 0.006 (p<0.05) result indicated that both methods were statistically significant. Comparing the Novel Thermal threshold approach to the Binarization operator, the findings show that the former achieves much higher accuracy.</description><subject>Edge detection</subject><subject>Statistical methods</subject><subject>Wound healing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKw0AUhgdRsFYXvsGAOyF17kmWpXiDgiAu3IXpzEmTmpszE2r7ED6zienqcDjf_3H4EbqlZEGJ4g9yQRhLCCdnaEalpFGsqDpHM0JSETHBPy_Rlfc7Qlgax8kM_S4bXR2OZbPF_qts8L7tG4sD_ITeAd6XocBgt4AtBDChbBtcQyhai3s_ZkIBrtbVMB34oq0s1kPctHWn3XifdAXoatycDjDktR_cNTRh8m_KZoCPerRfo4tcVx5uTnOO3p8eP1Yv0frt-XW1XEed4iSiIt8wLlUsLZNgiDFKJKmRuWA61VaZ3AoNsYktqCQhQnGxiYkZEGGM5XN0N0k713734EO2a3s39OAzTomgKmGSDtT9RHlThv_nss6VtXaHjJJsLDuT2als_gcjIXVS</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Raviteja, C.</creator><creator>Priyadarshini, P. S. Uma</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240913</creationdate><title>Analyzing skin wound texture with edge detection method using thermal threshold and comparing wound healing rate measurement with binarization</title><author>Raviteja, C. ; Priyadarshini, P. S. Uma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p630-14fb235675d25ec0cc6489c5f42a9ad6cfd4ae7c7de68804634b70c89c4ccd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Edge detection</topic><topic>Statistical methods</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raviteja, C.</creatorcontrib><creatorcontrib>Priyadarshini, P. S. Uma</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raviteja, C.</au><au>Priyadarshini, P. S. Uma</au><au>Prabu, R. Thandaiah</au><au>Ramkumar, G.</au><au>G, Anitha</au><au>Vidhyalakshmi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analyzing skin wound texture with edge detection method using thermal threshold and comparing wound healing rate measurement with binarization</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-13</date><risdate>2024</risdate><volume>2871</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This effort will use the Novel Thermal threshold operator and compare it with Binarization in order to develop a novel edge detection method for gauging the pace of wound healing. Sections and Procedures: We apply two edge detection approaches, namely Binarization and Novel Thermal threshold, to determine the wound healing rate. We used 80% of the pretest power to assess Group 1, which included twelve samples using Novel Thermal threshold, & Group 2, which included twelve samples utilizing binarization. The linearization technique had an accuracy rate of 88.10% and a wound healing rate of 0.38%, while the innovative thermal threshold edge detection method achieved a rate of 88.10%. A 0.006 (p<0.05) result indicated that both methods were statistically significant. Comparing the Novel Thermal threshold approach to the Binarization operator, the findings show that the former achieves much higher accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0228030</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2871 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3104168251 |
source | AIP Journals Complete |
subjects | Edge detection Statistical methods Wound healing |
title | Analyzing skin wound texture with edge detection method using thermal threshold and comparing wound healing rate measurement with binarization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analyzing%20skin%20wound%20texture%20with%20edge%20detection%20method%20using%20thermal%20threshold%20and%20comparing%20wound%20healing%20rate%20measurement%20with%20binarization&rft.btitle=AIP%20conference%20proceedings&rft.au=Raviteja,%20C.&rft.date=2024-09-13&rft.volume=2871&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0228030&rft_dat=%3Cproquest_scita%3E3104168251%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168251&rft_id=info:pmid/&rfr_iscdi=true |