GTCN: Gated Temporal Convolutional Networks for Controlled-Source Electromagnetic Data Denoising

To improve the signal-to-noise ratio (SNR) of controlled-source electromagnetic (CSEM) data observed in strong interference environments, a new deep learning network is proposed and named gated temporal convolutional network (GTCN) to map noisy sequences to high-quality sequences. This network is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Hauptverfasser: Li, Guang, Wu, Shouli, Cai, Hongzhu, Chen, Chaojian, Chen, Hui, Xiao, Donghan, Yan, Jiayong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Li, Guang
Wu, Shouli
Cai, Hongzhu
Chen, Chaojian
Chen, Hui
Xiao, Donghan
Yan, Jiayong
description To improve the signal-to-noise ratio (SNR) of controlled-source electromagnetic (CSEM) data observed in strong interference environments, a new deep learning network is proposed and named gated temporal convolutional network (GTCN) to map noisy sequences to high-quality sequences. This network is an improvement of two state-of-the-art (SOTA) networks specifically designed for time series processing, temporal convolutional network (TCN) and gated recurrent units (GRUs). A carefully crafted sample set is created by utilizing shift-invariant sparse coding (SISC) methods and used to train the newly proposed network and six other SOTA deep learning networks. Experimental results of the synthetic data indicate that the new network not only outperforms SISC in accuracy and efficiency but also is significantly superior to the other six SOTA deep learning methods. The proposed GTCN method can improve the 0 dB noisy signals to 32.6749 dB and improve the average SNR from −5 to 23.5999 dB. The effectiveness and reliability of the proposed method are also verified through measured data from Sichuan and Yunnan, China. The time series processed by the new approach exhibits more pronounced periodic characteristics, resulting in smoother and more continuous apparent resistivity curves. All these experiments demonstrate that the new scheme is an effective method to improve the quality of CSEM data and contribute to the reliability of CSEM exploration.
doi_str_mv 10.1109/TGRS.2024.3452558
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3104158790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10659909</ieee_id><sourcerecordid>3104158790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-1c499ab5ae0e7684344a19f717ae4aa13371c2d67d24dc455f20241132d5e6fa3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIlMIHIHGIxDnF60dSc0NpCUhVkWg4G-NsqpQ0LnYK4u9J1B44jXZ3ZjQ7hFwDnQBQdVfkr6sJo0xMuJBMyukJGUEPMU2EOCUjCiqJ2VSxc3IRwoZSEBLSEXnPi2x5H-WmwzIqcLtz3jRR5tpv1-y72rX9tMTux_nPEFXOD6fOu6bBMl65vbcYzRu0_Wpr1i12tY1mpjPRDFtXh7pdX5KzyjQBr444Jm-P8yJ7ihcv-XP2sIgtpEkXgxVKmQ9pkGKaTAUXwoCqUkgNCmOA8xQsK5O0ZKK0QspqeBaAs1JiUhk-JrcH3513X3sMnd708fr4QXOgAuQ0VbRnwYFlvQvBY6V3vt4a_6uB6qFIPRSpB299LLLX3Bw0NSL-4ydSKar4Hz2qbyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104158790</pqid></control><display><type>article</type><title>GTCN: Gated Temporal Convolutional Networks for Controlled-Source Electromagnetic Data Denoising</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Guang ; Wu, Shouli ; Cai, Hongzhu ; Chen, Chaojian ; Chen, Hui ; Xiao, Donghan ; Yan, Jiayong</creator><creatorcontrib>Li, Guang ; Wu, Shouli ; Cai, Hongzhu ; Chen, Chaojian ; Chen, Hui ; Xiao, Donghan ; Yan, Jiayong</creatorcontrib><description>To improve the signal-to-noise ratio (SNR) of controlled-source electromagnetic (CSEM) data observed in strong interference environments, a new deep learning network is proposed and named gated temporal convolutional network (GTCN) to map noisy sequences to high-quality sequences. This network is an improvement of two state-of-the-art (SOTA) networks specifically designed for time series processing, temporal convolutional network (TCN) and gated recurrent units (GRUs). A carefully crafted sample set is created by utilizing shift-invariant sparse coding (SISC) methods and used to train the newly proposed network and six other SOTA deep learning networks. Experimental results of the synthetic data indicate that the new network not only outperforms SISC in accuracy and efficiency but also is significantly superior to the other six SOTA deep learning methods. The proposed GTCN method can improve the 0 dB noisy signals to 32.6749 dB and improve the average SNR from −5 to 23.5999 dB. The effectiveness and reliability of the proposed method are also verified through measured data from Sichuan and Yunnan, China. The time series processed by the new approach exhibits more pronounced periodic characteristics, resulting in smoother and more continuous apparent resistivity curves. All these experiments demonstrate that the new scheme is an effective method to improve the quality of CSEM data and contribute to the reliability of CSEM exploration.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3452558</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Controlled-source electromagnetic (CSEM) data ; Convolutional neural networks ; Deep learning ; denoising ; Effectiveness ; Electromagnetics ; gated recurrent unit (GRU) ; Information processing ; Logic gates ; Networks ; Noise measurement ; Noise reduction ; Observational learning ; recurrent neural networks (RNNs) ; Reliability ; Sequences ; Signal to noise ratio ; Synthetic data ; temporal convolutional networks (TCNs) ; Time measurement ; Time series ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-1c499ab5ae0e7684344a19f717ae4aa13371c2d67d24dc455f20241132d5e6fa3</cites><orcidid>0000-0001-8693-3757 ; 0009-0007-8331-6252 ; 0000-0003-2516-2295 ; 0000-0001-7869-0724 ; 0000-0002-7787-5572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10659909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27906,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10659909$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Guang</creatorcontrib><creatorcontrib>Wu, Shouli</creatorcontrib><creatorcontrib>Cai, Hongzhu</creatorcontrib><creatorcontrib>Chen, Chaojian</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Xiao, Donghan</creatorcontrib><creatorcontrib>Yan, Jiayong</creatorcontrib><title>GTCN: Gated Temporal Convolutional Networks for Controlled-Source Electromagnetic Data Denoising</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>To improve the signal-to-noise ratio (SNR) of controlled-source electromagnetic (CSEM) data observed in strong interference environments, a new deep learning network is proposed and named gated temporal convolutional network (GTCN) to map noisy sequences to high-quality sequences. This network is an improvement of two state-of-the-art (SOTA) networks specifically designed for time series processing, temporal convolutional network (TCN) and gated recurrent units (GRUs). A carefully crafted sample set is created by utilizing shift-invariant sparse coding (SISC) methods and used to train the newly proposed network and six other SOTA deep learning networks. Experimental results of the synthetic data indicate that the new network not only outperforms SISC in accuracy and efficiency but also is significantly superior to the other six SOTA deep learning methods. The proposed GTCN method can improve the 0 dB noisy signals to 32.6749 dB and improve the average SNR from −5 to 23.5999 dB. The effectiveness and reliability of the proposed method are also verified through measured data from Sichuan and Yunnan, China. The time series processed by the new approach exhibits more pronounced periodic characteristics, resulting in smoother and more continuous apparent resistivity curves. All these experiments demonstrate that the new scheme is an effective method to improve the quality of CSEM data and contribute to the reliability of CSEM exploration.</description><subject>Controlled-source electromagnetic (CSEM) data</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>denoising</subject><subject>Effectiveness</subject><subject>Electromagnetics</subject><subject>gated recurrent unit (GRU)</subject><subject>Information processing</subject><subject>Logic gates</subject><subject>Networks</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Observational learning</subject><subject>recurrent neural networks (RNNs)</subject><subject>Reliability</subject><subject>Sequences</subject><subject>Signal to noise ratio</subject><subject>Synthetic data</subject><subject>temporal convolutional networks (TCNs)</subject><subject>Time measurement</subject><subject>Time series</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIlMIHIHGIxDnF60dSc0NpCUhVkWg4G-NsqpQ0LnYK4u9J1B44jXZ3ZjQ7hFwDnQBQdVfkr6sJo0xMuJBMyukJGUEPMU2EOCUjCiqJ2VSxc3IRwoZSEBLSEXnPi2x5H-WmwzIqcLtz3jRR5tpv1-y72rX9tMTux_nPEFXOD6fOu6bBMl65vbcYzRu0_Wpr1i12tY1mpjPRDFtXh7pdX5KzyjQBr444Jm-P8yJ7ihcv-XP2sIgtpEkXgxVKmQ9pkGKaTAUXwoCqUkgNCmOA8xQsK5O0ZKK0QspqeBaAs1JiUhk-JrcH3513X3sMnd708fr4QXOgAuQ0VbRnwYFlvQvBY6V3vt4a_6uB6qFIPRSpB299LLLX3Bw0NSL-4ydSKar4Hz2qbyw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Guang</creator><creator>Wu, Shouli</creator><creator>Cai, Hongzhu</creator><creator>Chen, Chaojian</creator><creator>Chen, Hui</creator><creator>Xiao, Donghan</creator><creator>Yan, Jiayong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8693-3757</orcidid><orcidid>https://orcid.org/0009-0007-8331-6252</orcidid><orcidid>https://orcid.org/0000-0003-2516-2295</orcidid><orcidid>https://orcid.org/0000-0001-7869-0724</orcidid><orcidid>https://orcid.org/0000-0002-7787-5572</orcidid></search><sort><creationdate>2024</creationdate><title>GTCN: Gated Temporal Convolutional Networks for Controlled-Source Electromagnetic Data Denoising</title><author>Li, Guang ; Wu, Shouli ; Cai, Hongzhu ; Chen, Chaojian ; Chen, Hui ; Xiao, Donghan ; Yan, Jiayong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-1c499ab5ae0e7684344a19f717ae4aa13371c2d67d24dc455f20241132d5e6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controlled-source electromagnetic (CSEM) data</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>denoising</topic><topic>Effectiveness</topic><topic>Electromagnetics</topic><topic>gated recurrent unit (GRU)</topic><topic>Information processing</topic><topic>Logic gates</topic><topic>Networks</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Observational learning</topic><topic>recurrent neural networks (RNNs)</topic><topic>Reliability</topic><topic>Sequences</topic><topic>Signal to noise ratio</topic><topic>Synthetic data</topic><topic>temporal convolutional networks (TCNs)</topic><topic>Time measurement</topic><topic>Time series</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guang</creatorcontrib><creatorcontrib>Wu, Shouli</creatorcontrib><creatorcontrib>Cai, Hongzhu</creatorcontrib><creatorcontrib>Chen, Chaojian</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Xiao, Donghan</creatorcontrib><creatorcontrib>Yan, Jiayong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Guang</au><au>Wu, Shouli</au><au>Cai, Hongzhu</au><au>Chen, Chaojian</au><au>Chen, Hui</au><au>Xiao, Donghan</au><au>Yan, Jiayong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GTCN: Gated Temporal Convolutional Networks for Controlled-Source Electromagnetic Data Denoising</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>To improve the signal-to-noise ratio (SNR) of controlled-source electromagnetic (CSEM) data observed in strong interference environments, a new deep learning network is proposed and named gated temporal convolutional network (GTCN) to map noisy sequences to high-quality sequences. This network is an improvement of two state-of-the-art (SOTA) networks specifically designed for time series processing, temporal convolutional network (TCN) and gated recurrent units (GRUs). A carefully crafted sample set is created by utilizing shift-invariant sparse coding (SISC) methods and used to train the newly proposed network and six other SOTA deep learning networks. Experimental results of the synthetic data indicate that the new network not only outperforms SISC in accuracy and efficiency but also is significantly superior to the other six SOTA deep learning methods. The proposed GTCN method can improve the 0 dB noisy signals to 32.6749 dB and improve the average SNR from −5 to 23.5999 dB. The effectiveness and reliability of the proposed method are also verified through measured data from Sichuan and Yunnan, China. The time series processed by the new approach exhibits more pronounced periodic characteristics, resulting in smoother and more continuous apparent resistivity curves. All these experiments demonstrate that the new scheme is an effective method to improve the quality of CSEM data and contribute to the reliability of CSEM exploration.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3452558</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8693-3757</orcidid><orcidid>https://orcid.org/0009-0007-8331-6252</orcidid><orcidid>https://orcid.org/0000-0003-2516-2295</orcidid><orcidid>https://orcid.org/0000-0001-7869-0724</orcidid><orcidid>https://orcid.org/0000-0002-7787-5572</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_3104158790
source IEEE Electronic Library (IEL)
subjects Controlled-source electromagnetic (CSEM) data
Convolutional neural networks
Deep learning
denoising
Effectiveness
Electromagnetics
gated recurrent unit (GRU)
Information processing
Logic gates
Networks
Noise measurement
Noise reduction
Observational learning
recurrent neural networks (RNNs)
Reliability
Sequences
Signal to noise ratio
Synthetic data
temporal convolutional networks (TCNs)
Time measurement
Time series
Training
title GTCN: Gated Temporal Convolutional Networks for Controlled-Source Electromagnetic Data Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GTCN:%20Gated%20Temporal%20Convolutional%20Networks%20for%20Controlled-Source%20Electromagnetic%20Data%20Denoising&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Guang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3452558&rft_dat=%3Cproquest_RIE%3E3104158790%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104158790&rft_id=info:pmid/&rft_ieee_id=10659909&rfr_iscdi=true