Glivenko–Cantelli classes and NIP formulas

We give several new equivalences of NIP for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2024-11, Vol.63 (7-8), p.1005-1031
1. Verfasser: Khanaki, Karim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1031
container_issue 7-8
container_start_page 1005
container_title Archive for mathematical logic
container_volume 63
creator Khanaki, Karim
description We give several new equivalences of NIP for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasize that Keisler measures are more complicated than types (even in the NIP context), in an analytic sense. Among other things, we show that for a first order theory T and a formula ϕ ( x , y ) , the following are equivalent: ϕ has NIP with respect to T . For any global ϕ -type p ( x ) and any model M , if p is finitely satisfiable in M , then p is generalized DBSC definable over M . In particular, if M is countable, then p is DBSC definable over M . (Cf. Definition  3.7 , Fact  3.8 .) For any global Keisler ϕ -measure μ ( x ) and any model M , if μ is finitely satisfiable in M , then μ is generalized Baire-1/2 definable over M . In particular, if M is countable, μ is Baire-1/2 definable over M . (Cf. Definition  3.9 .) For any model M and any Keisler ϕ -measure μ ( x ) over M , sup b ∈ M | 1 k ∑ i = 1 k ϕ ( p i , b ) - μ ( ϕ ( x , b ) ) | → 0 , for almost every ( p i ) ∈ S ϕ ( M ) N with the product measure μ N . (Cf. Theorem  4.4 .) Suppose moreover that T is countable and NIP , then for any countable model M , the space of global M -finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem  5.1 .)
doi_str_mv 10.1007/s00153-024-00932-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103963516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103963516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-bade759edf6d92f0064a83ad02aad1914ea6558652aa69175b433b860d1180783</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFdfwFPBq9GZpEnToyy6LizqQc8hbVLp2m3XpBW8-Q77hj6J0QrePM3Mz___Ax8hpwgXCJBfBgAUnALLKEDBGc33SIJZXEBKsU-SKHIqVCYPyVEI62hnSmFCzhdt8-a6l_7zYzc33eDatkmr1oTgQmo6m94tH9K695sxasfkoDZtcCe_c0aebq4f57d0db9Yzq9WtGIAAy2NdbkonK2lLVgNIDOjuLHAjLFYYOaMFEJJEW9ZYC7KjPNSSbCICnLFZ-Rs6t36_nV0YdDrfvRdfKk5Ai8kFyiji02uyvcheFfrrW82xr9rBP1NRU9UdKSif6joPIb4FArR3D07_1f9T-oLdxJjjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103963516</pqid></control><display><type>article</type><title>Glivenko–Cantelli classes and NIP formulas</title><source>Springer Nature - Complete Springer Journals</source><creator>Khanaki, Karim</creator><creatorcontrib>Khanaki, Karim</creatorcontrib><description>We give several new equivalences of NIP for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasize that Keisler measures are more complicated than types (even in the NIP context), in an analytic sense. Among other things, we show that for a first order theory T and a formula ϕ ( x , y ) , the following are equivalent: ϕ has NIP with respect to T . For any global ϕ -type p ( x ) and any model M , if p is finitely satisfiable in M , then p is generalized DBSC definable over M . In particular, if M is countable, then p is DBSC definable over M . (Cf. Definition  3.7 , Fact  3.8 .) For any global Keisler ϕ -measure μ ( x ) and any model M , if μ is finitely satisfiable in M , then μ is generalized Baire-1/2 definable over M . In particular, if M is countable, μ is Baire-1/2 definable over M . (Cf. Definition  3.9 .) For any model M and any Keisler ϕ -measure μ ( x ) over M , sup b ∈ M | 1 k ∑ i = 1 k ϕ ( p i , b ) - μ ( ϕ ( x , b ) ) | → 0 , for almost every ( p i ) ∈ S ϕ ( M ) N with the product measure μ N . (Cf. Theorem  4.4 .) Suppose moreover that T is countable and NIP , then for any countable model M , the space of global M -finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem  5.1 .)</description><identifier>ISSN: 0933-5846</identifier><identifier>EISSN: 1432-0665</identifier><identifier>DOI: 10.1007/s00153-024-00932-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Equivalence ; Formulas (mathematics) ; Functional analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Archive for mathematical logic, 2024-11, Vol.63 (7-8), p.1005-1031</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-bade759edf6d92f0064a83ad02aad1914ea6558652aa69175b433b860d1180783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00153-024-00932-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00153-024-00932-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Khanaki, Karim</creatorcontrib><title>Glivenko–Cantelli classes and NIP formulas</title><title>Archive for mathematical logic</title><addtitle>Arch. Math. Logic</addtitle><description>We give several new equivalences of NIP for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasize that Keisler measures are more complicated than types (even in the NIP context), in an analytic sense. Among other things, we show that for a first order theory T and a formula ϕ ( x , y ) , the following are equivalent: ϕ has NIP with respect to T . For any global ϕ -type p ( x ) and any model M , if p is finitely satisfiable in M , then p is generalized DBSC definable over M . In particular, if M is countable, then p is DBSC definable over M . (Cf. Definition  3.7 , Fact  3.8 .) For any global Keisler ϕ -measure μ ( x ) and any model M , if μ is finitely satisfiable in M , then μ is generalized Baire-1/2 definable over M . In particular, if M is countable, μ is Baire-1/2 definable over M . (Cf. Definition  3.9 .) For any model M and any Keisler ϕ -measure μ ( x ) over M , sup b ∈ M | 1 k ∑ i = 1 k ϕ ( p i , b ) - μ ( ϕ ( x , b ) ) | → 0 , for almost every ( p i ) ∈ S ϕ ( M ) N with the product measure μ N . (Cf. Theorem  4.4 .) Suppose moreover that T is countable and NIP , then for any countable model M , the space of global M -finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem  5.1 .)</description><subject>Algebra</subject><subject>Equivalence</subject><subject>Formulas (mathematics)</subject><subject>Functional analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0933-5846</issn><issn>1432-0665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFdfwFPBq9GZpEnToyy6LizqQc8hbVLp2m3XpBW8-Q77hj6J0QrePM3Mz___Ax8hpwgXCJBfBgAUnALLKEDBGc33SIJZXEBKsU-SKHIqVCYPyVEI62hnSmFCzhdt8-a6l_7zYzc33eDatkmr1oTgQmo6m94tH9K695sxasfkoDZtcCe_c0aebq4f57d0db9Yzq9WtGIAAy2NdbkonK2lLVgNIDOjuLHAjLFYYOaMFEJJEW9ZYC7KjPNSSbCICnLFZ-Rs6t36_nV0YdDrfvRdfKk5Ai8kFyiji02uyvcheFfrrW82xr9rBP1NRU9UdKSif6joPIb4FArR3D07_1f9T-oLdxJjjg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Khanaki, Karim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20241101</creationdate><title>Glivenko–Cantelli classes and NIP formulas</title><author>Khanaki, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-bade759edf6d92f0064a83ad02aad1914ea6558652aa69175b433b860d1180783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Equivalence</topic><topic>Formulas (mathematics)</topic><topic>Functional analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanaki, Karim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for mathematical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanaki, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glivenko–Cantelli classes and NIP formulas</atitle><jtitle>Archive for mathematical logic</jtitle><stitle>Arch. Math. Logic</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>63</volume><issue>7-8</issue><spage>1005</spage><epage>1031</epage><pages>1005-1031</pages><issn>0933-5846</issn><eissn>1432-0665</eissn><abstract>We give several new equivalences of NIP for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasize that Keisler measures are more complicated than types (even in the NIP context), in an analytic sense. Among other things, we show that for a first order theory T and a formula ϕ ( x , y ) , the following are equivalent: ϕ has NIP with respect to T . For any global ϕ -type p ( x ) and any model M , if p is finitely satisfiable in M , then p is generalized DBSC definable over M . In particular, if M is countable, then p is DBSC definable over M . (Cf. Definition  3.7 , Fact  3.8 .) For any global Keisler ϕ -measure μ ( x ) and any model M , if μ is finitely satisfiable in M , then μ is generalized Baire-1/2 definable over M . In particular, if M is countable, μ is Baire-1/2 definable over M . (Cf. Definition  3.9 .) For any model M and any Keisler ϕ -measure μ ( x ) over M , sup b ∈ M | 1 k ∑ i = 1 k ϕ ( p i , b ) - μ ( ϕ ( x , b ) ) | → 0 , for almost every ( p i ) ∈ S ϕ ( M ) N with the product measure μ N . (Cf. Theorem  4.4 .) Suppose moreover that T is countable and NIP , then for any countable model M , the space of global M -finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem  5.1 .)</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00153-024-00932-7</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-5846
ispartof Archive for mathematical logic, 2024-11, Vol.63 (7-8), p.1005-1031
issn 0933-5846
1432-0665
language eng
recordid cdi_proquest_journals_3103963516
source Springer Nature - Complete Springer Journals
subjects Algebra
Equivalence
Formulas (mathematics)
Functional analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Theorems
title Glivenko–Cantelli classes and NIP formulas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glivenko%E2%80%93Cantelli%20classes%20and%20NIP%20formulas&rft.jtitle=Archive%20for%20mathematical%20logic&rft.au=Khanaki,%20Karim&rft.date=2024-11-01&rft.volume=63&rft.issue=7-8&rft.spage=1005&rft.epage=1031&rft.pages=1005-1031&rft.issn=0933-5846&rft.eissn=1432-0665&rft_id=info:doi/10.1007/s00153-024-00932-7&rft_dat=%3Cproquest_cross%3E3103963516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103963516&rft_id=info:pmid/&rfr_iscdi=true