Glivenko–Cantelli classes and NIP formulas
We give several new equivalences of NIP for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasiz...
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2024-11, Vol.63 (7-8), p.1005-1031 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1031 |
---|---|
container_issue | 7-8 |
container_start_page | 1005 |
container_title | Archive for mathematical logic |
container_volume | 63 |
creator | Khanaki, Karim |
description | We give several new equivalences of
NIP
for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasize that Keisler measures are more complicated than types (even in the
NIP
context), in an analytic sense. Among other things, we show that for a first order theory
T
and a formula
ϕ
(
x
,
y
)
, the following are equivalent:
ϕ
has
NIP
with respect to
T
.
For any global
ϕ
-type
p
(
x
) and any model
M
, if
p
is finitely satisfiable in
M
, then
p
is generalized
DBSC
definable over
M
. In particular, if
M
is countable, then
p
is
DBSC
definable over
M
. (Cf. Definition
3.7
, Fact
3.8
.)
For any global Keisler
ϕ
-measure
μ
(
x
)
and any model
M
, if
μ
is finitely satisfiable in
M
, then
μ
is generalized Baire-1/2 definable over
M
. In particular, if
M
is countable,
μ
is Baire-1/2 definable over
M
. (Cf. Definition
3.9
.)
For any model
M
and any Keisler
ϕ
-measure
μ
(
x
)
over
M
,
sup
b
∈
M
|
1
k
∑
i
=
1
k
ϕ
(
p
i
,
b
)
-
μ
(
ϕ
(
x
,
b
)
)
|
→
0
,
for almost every
(
p
i
)
∈
S
ϕ
(
M
)
N
with the product measure
μ
N
. (Cf. Theorem
4.4
.)
Suppose moreover that
T
is countable and
NIP
, then for any countable model
M
, the space of global
M
-finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem
5.1
.) |
doi_str_mv | 10.1007/s00153-024-00932-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103963516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103963516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-bade759edf6d92f0064a83ad02aad1914ea6558652aa69175b433b860d1180783</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFdfwFPBq9GZpEnToyy6LizqQc8hbVLp2m3XpBW8-Q77hj6J0QrePM3Mz___Ax8hpwgXCJBfBgAUnALLKEDBGc33SIJZXEBKsU-SKHIqVCYPyVEI62hnSmFCzhdt8-a6l_7zYzc33eDatkmr1oTgQmo6m94tH9K695sxasfkoDZtcCe_c0aebq4f57d0db9Yzq9WtGIAAy2NdbkonK2lLVgNIDOjuLHAjLFYYOaMFEJJEW9ZYC7KjPNSSbCICnLFZ-Rs6t36_nV0YdDrfvRdfKk5Ai8kFyiji02uyvcheFfrrW82xr9rBP1NRU9UdKSif6joPIb4FArR3D07_1f9T-oLdxJjjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103963516</pqid></control><display><type>article</type><title>Glivenko–Cantelli classes and NIP formulas</title><source>Springer Nature - Complete Springer Journals</source><creator>Khanaki, Karim</creator><creatorcontrib>Khanaki, Karim</creatorcontrib><description>We give several new equivalences of
NIP
for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasize that Keisler measures are more complicated than types (even in the
NIP
context), in an analytic sense. Among other things, we show that for a first order theory
T
and a formula
ϕ
(
x
,
y
)
, the following are equivalent:
ϕ
has
NIP
with respect to
T
.
For any global
ϕ
-type
p
(
x
) and any model
M
, if
p
is finitely satisfiable in
M
, then
p
is generalized
DBSC
definable over
M
. In particular, if
M
is countable, then
p
is
DBSC
definable over
M
. (Cf. Definition
3.7
, Fact
3.8
.)
For any global Keisler
ϕ
-measure
μ
(
x
)
and any model
M
, if
μ
is finitely satisfiable in
M
, then
μ
is generalized Baire-1/2 definable over
M
. In particular, if
M
is countable,
μ
is Baire-1/2 definable over
M
. (Cf. Definition
3.9
.)
For any model
M
and any Keisler
ϕ
-measure
μ
(
x
)
over
M
,
sup
b
∈
M
|
1
k
∑
i
=
1
k
ϕ
(
p
i
,
b
)
-
μ
(
ϕ
(
x
,
b
)
)
|
→
0
,
for almost every
(
p
i
)
∈
S
ϕ
(
M
)
N
with the product measure
μ
N
. (Cf. Theorem
4.4
.)
Suppose moreover that
T
is countable and
NIP
, then for any countable model
M
, the space of global
M
-finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem
5.1
.)</description><identifier>ISSN: 0933-5846</identifier><identifier>EISSN: 1432-0665</identifier><identifier>DOI: 10.1007/s00153-024-00932-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Equivalence ; Formulas (mathematics) ; Functional analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Archive for mathematical logic, 2024-11, Vol.63 (7-8), p.1005-1031</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-bade759edf6d92f0064a83ad02aad1914ea6558652aa69175b433b860d1180783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00153-024-00932-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00153-024-00932-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Khanaki, Karim</creatorcontrib><title>Glivenko–Cantelli classes and NIP formulas</title><title>Archive for mathematical logic</title><addtitle>Arch. Math. Logic</addtitle><description>We give several new equivalences of
NIP
for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasize that Keisler measures are more complicated than types (even in the
NIP
context), in an analytic sense. Among other things, we show that for a first order theory
T
and a formula
ϕ
(
x
,
y
)
, the following are equivalent:
ϕ
has
NIP
with respect to
T
.
For any global
ϕ
-type
p
(
x
) and any model
M
, if
p
is finitely satisfiable in
M
, then
p
is generalized
DBSC
definable over
M
. In particular, if
M
is countable, then
p
is
DBSC
definable over
M
. (Cf. Definition
3.7
, Fact
3.8
.)
For any global Keisler
ϕ
-measure
μ
(
x
)
and any model
M
, if
μ
is finitely satisfiable in
M
, then
μ
is generalized Baire-1/2 definable over
M
. In particular, if
M
is countable,
μ
is Baire-1/2 definable over
M
. (Cf. Definition
3.9
.)
For any model
M
and any Keisler
ϕ
-measure
μ
(
x
)
over
M
,
sup
b
∈
M
|
1
k
∑
i
=
1
k
ϕ
(
p
i
,
b
)
-
μ
(
ϕ
(
x
,
b
)
)
|
→
0
,
for almost every
(
p
i
)
∈
S
ϕ
(
M
)
N
with the product measure
μ
N
. (Cf. Theorem
4.4
.)
Suppose moreover that
T
is countable and
NIP
, then for any countable model
M
, the space of global
M
-finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem
5.1
.)</description><subject>Algebra</subject><subject>Equivalence</subject><subject>Formulas (mathematics)</subject><subject>Functional analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0933-5846</issn><issn>1432-0665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFdfwFPBq9GZpEnToyy6LizqQc8hbVLp2m3XpBW8-Q77hj6J0QrePM3Mz___Ax8hpwgXCJBfBgAUnALLKEDBGc33SIJZXEBKsU-SKHIqVCYPyVEI62hnSmFCzhdt8-a6l_7zYzc33eDatkmr1oTgQmo6m94tH9K695sxasfkoDZtcCe_c0aebq4f57d0db9Yzq9WtGIAAy2NdbkonK2lLVgNIDOjuLHAjLFYYOaMFEJJEW9ZYC7KjPNSSbCICnLFZ-Rs6t36_nV0YdDrfvRdfKk5Ai8kFyiji02uyvcheFfrrW82xr9rBP1NRU9UdKSif6joPIb4FArR3D07_1f9T-oLdxJjjg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Khanaki, Karim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20241101</creationdate><title>Glivenko–Cantelli classes and NIP formulas</title><author>Khanaki, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-bade759edf6d92f0064a83ad02aad1914ea6558652aa69175b433b860d1180783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Equivalence</topic><topic>Formulas (mathematics)</topic><topic>Functional analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanaki, Karim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for mathematical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanaki, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glivenko–Cantelli classes and NIP formulas</atitle><jtitle>Archive for mathematical logic</jtitle><stitle>Arch. Math. Logic</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>63</volume><issue>7-8</issue><spage>1005</spage><epage>1031</epage><pages>1005-1031</pages><issn>0933-5846</issn><eissn>1432-0665</eissn><abstract>We give several new equivalences of
NIP
for formulas and new proofs of known results using Talagrand (Ann Probab 15:837–870, 1987) and Haydon et al. (in: Functional Analysis Proceedings, The University of Texas at Austin 1987–1989, Lecture Notes in Mathematics, Springer, New York, 1991). We emphasize that Keisler measures are more complicated than types (even in the
NIP
context), in an analytic sense. Among other things, we show that for a first order theory
T
and a formula
ϕ
(
x
,
y
)
, the following are equivalent:
ϕ
has
NIP
with respect to
T
.
For any global
ϕ
-type
p
(
x
) and any model
M
, if
p
is finitely satisfiable in
M
, then
p
is generalized
DBSC
definable over
M
. In particular, if
M
is countable, then
p
is
DBSC
definable over
M
. (Cf. Definition
3.7
, Fact
3.8
.)
For any global Keisler
ϕ
-measure
μ
(
x
)
and any model
M
, if
μ
is finitely satisfiable in
M
, then
μ
is generalized Baire-1/2 definable over
M
. In particular, if
M
is countable,
μ
is Baire-1/2 definable over
M
. (Cf. Definition
3.9
.)
For any model
M
and any Keisler
ϕ
-measure
μ
(
x
)
over
M
,
sup
b
∈
M
|
1
k
∑
i
=
1
k
ϕ
(
p
i
,
b
)
-
μ
(
ϕ
(
x
,
b
)
)
|
→
0
,
for almost every
(
p
i
)
∈
S
ϕ
(
M
)
N
with the product measure
μ
N
. (Cf. Theorem
4.4
.)
Suppose moreover that
T
is countable and
NIP
, then for any countable model
M
, the space of global
M
-finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem
5.1
.)</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00153-024-00932-7</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-5846 |
ispartof | Archive for mathematical logic, 2024-11, Vol.63 (7-8), p.1005-1031 |
issn | 0933-5846 1432-0665 |
language | eng |
recordid | cdi_proquest_journals_3103963516 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Equivalence Formulas (mathematics) Functional analysis Mathematical Logic and Foundations Mathematics Mathematics and Statistics Theorems |
title | Glivenko–Cantelli classes and NIP formulas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glivenko%E2%80%93Cantelli%20classes%20and%20NIP%20formulas&rft.jtitle=Archive%20for%20mathematical%20logic&rft.au=Khanaki,%20Karim&rft.date=2024-11-01&rft.volume=63&rft.issue=7-8&rft.spage=1005&rft.epage=1031&rft.pages=1005-1031&rft.issn=0933-5846&rft.eissn=1432-0665&rft_id=info:doi/10.1007/s00153-024-00932-7&rft_dat=%3Cproquest_cross%3E3103963516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103963516&rft_id=info:pmid/&rfr_iscdi=true |