Automated ASD detection in children from raw speech using customized STFT-CNN model
Autism spectrum disorder (ASD), a prevalent neurodevelopmental condition impacting cognitive, communicative, and behavioral aspects, typically manifests in early childhood due to genetic, environmental, and immunological factors. Employing a novel dataset termed children’s ASD speech corpus (CASD-SC...
Gespeichert in:
Veröffentlicht in: | International journal of speech technology 2024, Vol.27 (3), p.701-716 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 716 |
---|---|
container_issue | 3 |
container_start_page | 701 |
container_title | International journal of speech technology |
container_volume | 27 |
creator | Sai, Kurma Venkata Keerthana Krishna, Rompicharla Thanmayee Radha, Kodali Rao, Dhulipalla Venkata Muneera, Abdul |
description | Autism spectrum disorder (ASD), a prevalent neurodevelopmental condition impacting cognitive, communicative, and behavioral aspects, typically manifests in early childhood due to genetic, environmental, and immunological factors. Employing a novel dataset termed children’s ASD speech corpus (CASD-SC), the research makes use of short-time Fourier transform (STFT) layered convolutional neural networks (CNN), incorporating an image input layer and a sequence input layer. The analysis encompasses data both with and without augmentation, exploring various CNN configurations. Results showcase that the log spectrogram-based STFT layered CNN model achieves 86.6% accuracy for the raw data, while the pre-emphasis filter (PEF) with learnables-based STFT layered CNN model attains 99.1% accuracy for the data with augmentation for detecting ASD in children. This investigation bridges the literature gap by evaluating child-specific raw speech data. The study underscores the significance of processing and training efficiency in ASD diagnosis and promotes early intervention techniques by improving ASD detection in children. |
doi_str_mv | 10.1007/s10772-024-10131-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103963506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103963506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1157-3b0f2e360e9620a27e00141cc30cb49ea04f105c122b717d0f478f78adfd2ad23</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwBzhF4hywk65pj9NggDSNw8Y5yvKxdVrbkbRC8OsJFIkbJ1vW-9jWQ8g1wi0CyLuIICVnwDOGgAKZPCEjnKRRgQinqRcFMp5hfk4uYtwDQClLPiKrad-1te6cpdPVPbWuc6ar2oZWDTW76mCDa6gPbU2Dfqfx6JzZ0T5WzZaaPia0-kzoaj1fs9lySevWusMlOfP6EN3Vbx2T1_nDevbEFi-Pz7PpghlMrzGxAc-dyMGVOQfNpQPADI0RYDZZ6TRkHmFikPONRGnBZ7LwstDWW64tF2NyM-w9hvatd7FT-7YPTTqpBIIoczGBPKX4kDKhjTE4r46hqnX4UAjqW54a5KkkT_3IUzJBYoBiCjdbF_5W_0N9AfNbcFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103963506</pqid></control><display><type>article</type><title>Automated ASD detection in children from raw speech using customized STFT-CNN model</title><source>SpringerNature Journals</source><creator>Sai, Kurma Venkata Keerthana ; Krishna, Rompicharla Thanmayee ; Radha, Kodali ; Rao, Dhulipalla Venkata ; Muneera, Abdul</creator><creatorcontrib>Sai, Kurma Venkata Keerthana ; Krishna, Rompicharla Thanmayee ; Radha, Kodali ; Rao, Dhulipalla Venkata ; Muneera, Abdul</creatorcontrib><description>Autism spectrum disorder (ASD), a prevalent neurodevelopmental condition impacting cognitive, communicative, and behavioral aspects, typically manifests in early childhood due to genetic, environmental, and immunological factors. Employing a novel dataset termed children’s ASD speech corpus (CASD-SC), the research makes use of short-time Fourier transform (STFT) layered convolutional neural networks (CNN), incorporating an image input layer and a sequence input layer. The analysis encompasses data both with and without augmentation, exploring various CNN configurations. Results showcase that the log spectrogram-based STFT layered CNN model achieves 86.6% accuracy for the raw data, while the pre-emphasis filter (PEF) with learnables-based STFT layered CNN model attains 99.1% accuracy for the data with augmentation for detecting ASD in children. This investigation bridges the literature gap by evaluating child-specific raw speech data. The study underscores the significance of processing and training efficiency in ASD diagnosis and promotes early intervention techniques by improving ASD detection in children.</description><identifier>ISSN: 1381-2416</identifier><identifier>EISSN: 1572-8110</identifier><identifier>DOI: 10.1007/s10772-024-10131-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Autism ; Children ; Data augmentation ; Engineering ; Fourier transforms ; Immunology ; Mass media ; Neural networks ; Signal,Image and Speech Processing ; Social Sciences ; Speech</subject><ispartof>International journal of speech technology, 2024, Vol.27 (3), p.701-716</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1157-3b0f2e360e9620a27e00141cc30cb49ea04f105c122b717d0f478f78adfd2ad23</cites><orcidid>0000-0002-8064-0440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10772-024-10131-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10772-024-10131-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sai, Kurma Venkata Keerthana</creatorcontrib><creatorcontrib>Krishna, Rompicharla Thanmayee</creatorcontrib><creatorcontrib>Radha, Kodali</creatorcontrib><creatorcontrib>Rao, Dhulipalla Venkata</creatorcontrib><creatorcontrib>Muneera, Abdul</creatorcontrib><title>Automated ASD detection in children from raw speech using customized STFT-CNN model</title><title>International journal of speech technology</title><addtitle>Int J Speech Technol</addtitle><description>Autism spectrum disorder (ASD), a prevalent neurodevelopmental condition impacting cognitive, communicative, and behavioral aspects, typically manifests in early childhood due to genetic, environmental, and immunological factors. Employing a novel dataset termed children’s ASD speech corpus (CASD-SC), the research makes use of short-time Fourier transform (STFT) layered convolutional neural networks (CNN), incorporating an image input layer and a sequence input layer. The analysis encompasses data both with and without augmentation, exploring various CNN configurations. Results showcase that the log spectrogram-based STFT layered CNN model achieves 86.6% accuracy for the raw data, while the pre-emphasis filter (PEF) with learnables-based STFT layered CNN model attains 99.1% accuracy for the data with augmentation for detecting ASD in children. This investigation bridges the literature gap by evaluating child-specific raw speech data. The study underscores the significance of processing and training efficiency in ASD diagnosis and promotes early intervention techniques by improving ASD detection in children.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Autism</subject><subject>Children</subject><subject>Data augmentation</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Immunology</subject><subject>Mass media</subject><subject>Neural networks</subject><subject>Signal,Image and Speech Processing</subject><subject>Social Sciences</subject><subject>Speech</subject><issn>1381-2416</issn><issn>1572-8110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwBzhF4hywk65pj9NggDSNw8Y5yvKxdVrbkbRC8OsJFIkbJ1vW-9jWQ8g1wi0CyLuIICVnwDOGgAKZPCEjnKRRgQinqRcFMp5hfk4uYtwDQClLPiKrad-1te6cpdPVPbWuc6ar2oZWDTW76mCDa6gPbU2Dfqfx6JzZ0T5WzZaaPia0-kzoaj1fs9lySevWusMlOfP6EN3Vbx2T1_nDevbEFi-Pz7PpghlMrzGxAc-dyMGVOQfNpQPADI0RYDZZ6TRkHmFikPONRGnBZ7LwstDWW64tF2NyM-w9hvatd7FT-7YPTTqpBIIoczGBPKX4kDKhjTE4r46hqnX4UAjqW54a5KkkT_3IUzJBYoBiCjdbF_5W_0N9AfNbcFs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Sai, Kurma Venkata Keerthana</creator><creator>Krishna, Rompicharla Thanmayee</creator><creator>Radha, Kodali</creator><creator>Rao, Dhulipalla Venkata</creator><creator>Muneera, Abdul</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><orcidid>https://orcid.org/0000-0002-8064-0440</orcidid></search><sort><creationdate>2024</creationdate><title>Automated ASD detection in children from raw speech using customized STFT-CNN model</title><author>Sai, Kurma Venkata Keerthana ; Krishna, Rompicharla Thanmayee ; Radha, Kodali ; Rao, Dhulipalla Venkata ; Muneera, Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1157-3b0f2e360e9620a27e00141cc30cb49ea04f105c122b717d0f478f78adfd2ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Autism</topic><topic>Children</topic><topic>Data augmentation</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Immunology</topic><topic>Mass media</topic><topic>Neural networks</topic><topic>Signal,Image and Speech Processing</topic><topic>Social Sciences</topic><topic>Speech</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sai, Kurma Venkata Keerthana</creatorcontrib><creatorcontrib>Krishna, Rompicharla Thanmayee</creatorcontrib><creatorcontrib>Radha, Kodali</creatorcontrib><creatorcontrib>Rao, Dhulipalla Venkata</creatorcontrib><creatorcontrib>Muneera, Abdul</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>International journal of speech technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sai, Kurma Venkata Keerthana</au><au>Krishna, Rompicharla Thanmayee</au><au>Radha, Kodali</au><au>Rao, Dhulipalla Venkata</au><au>Muneera, Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated ASD detection in children from raw speech using customized STFT-CNN model</atitle><jtitle>International journal of speech technology</jtitle><stitle>Int J Speech Technol</stitle><date>2024</date><risdate>2024</risdate><volume>27</volume><issue>3</issue><spage>701</spage><epage>716</epage><pages>701-716</pages><issn>1381-2416</issn><eissn>1572-8110</eissn><abstract>Autism spectrum disorder (ASD), a prevalent neurodevelopmental condition impacting cognitive, communicative, and behavioral aspects, typically manifests in early childhood due to genetic, environmental, and immunological factors. Employing a novel dataset termed children’s ASD speech corpus (CASD-SC), the research makes use of short-time Fourier transform (STFT) layered convolutional neural networks (CNN), incorporating an image input layer and a sequence input layer. The analysis encompasses data both with and without augmentation, exploring various CNN configurations. Results showcase that the log spectrogram-based STFT layered CNN model achieves 86.6% accuracy for the raw data, while the pre-emphasis filter (PEF) with learnables-based STFT layered CNN model attains 99.1% accuracy for the data with augmentation for detecting ASD in children. This investigation bridges the literature gap by evaluating child-specific raw speech data. The study underscores the significance of processing and training efficiency in ASD diagnosis and promotes early intervention techniques by improving ASD detection in children.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10772-024-10131-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8064-0440</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1381-2416 |
ispartof | International journal of speech technology, 2024, Vol.27 (3), p.701-716 |
issn | 1381-2416 1572-8110 |
language | eng |
recordid | cdi_proquest_journals_3103963506 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Artificial neural networks Autism Children Data augmentation Engineering Fourier transforms Immunology Mass media Neural networks Signal,Image and Speech Processing Social Sciences Speech |
title | Automated ASD detection in children from raw speech using customized STFT-CNN model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20ASD%20detection%20in%20children%20from%20raw%20speech%20using%20customized%20STFT-CNN%20model&rft.jtitle=International%20journal%20of%20speech%20technology&rft.au=Sai,%20Kurma%20Venkata%20Keerthana&rft.date=2024&rft.volume=27&rft.issue=3&rft.spage=701&rft.epage=716&rft.pages=701-716&rft.issn=1381-2416&rft.eissn=1572-8110&rft_id=info:doi/10.1007/s10772-024-10131-7&rft_dat=%3Cproquest_cross%3E3103963506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103963506&rft_id=info:pmid/&rfr_iscdi=true |