A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction

Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-09, Vol.13 (17), p.3536
Hauptverfasser: Huang, Xu, Wang, Leying, Ge, Leijiao, Hou, Luyang, Du, Tianshuo, Zheng, Yiwen, Chen, Yanbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 3536
container_title Electronics (Basel)
container_volume 13
creator Huang, Xu
Wang, Leying
Ge, Leijiao
Hou, Luyang
Du, Tianshuo
Zheng, Yiwen
Chen, Yanbo
description Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method.
doi_str_mv 10.3390/electronics13173536
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103843004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103843004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-4315bc9f693e8a1f3eaf3e50b2b1070ed2c4a074a3fb5c2365417a78c60a74643</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWGo_gZeA59Uks3-PtbYqVCy0npfZbNZu2d2sSVbtwe9uaj14cGCYx_D4PXiEXHJ2DZCxG9Uo6Yzuamk58AQiiE_ISLAkCzKRidM_-pxMrN0xPxmHFNiIfE3pequNCzbKtHSlP5ShK6PKWrpad_RJua0uaaX9d6udfteNQx9Eb9GqknrHum7rBg29wz2dNYN1ytTdK8WupOsePcST214bbOhCoRuMovNPZ_CHf0HOKmysmvzeMXlZzDezh2D5fP84my4DKZhwQQg8KmRWxRmoFHkFCv1GrBAFZwlTpZAhsiREqIpICoijkCeYpDJmmIRxCGNydeT2Rr8Nyrp8pwfT-cgcOIM0BMYOLji6pNHWGlXlvalbNPucs_xQdf5P1fAN1dR11w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103843004</pqid></control><display><type>article</type><title>A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Xu ; Wang, Leying ; Ge, Leijiao ; Hou, Luyang ; Du, Tianshuo ; Zheng, Yiwen ; Chen, Yanbo</creator><creatorcontrib>Huang, Xu ; Wang, Leying ; Ge, Leijiao ; Hou, Luyang ; Du, Tianshuo ; Zheng, Yiwen ; Chen, Yanbo</creatorcontrib><description>Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13173536</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Alternative energy sources ; Artificial intelligence ; Clustering ; Datasets ; Deep learning ; Electricity distribution ; Energy consumption ; Error analysis ; Feature extraction ; Human error ; Humidity ; Methods ; Missing data ; Neural networks ; Photovoltaic cells ; Power plants ; Prediction models ; Radiation ; Root-mean-square errors ; Search algorithms ; Solar power generation ; Statistical analysis ; Time of use ; Time series</subject><ispartof>Electronics (Basel), 2024-09, Vol.13 (17), p.3536</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c202t-4315bc9f693e8a1f3eaf3e50b2b1070ed2c4a074a3fb5c2365417a78c60a74643</cites><orcidid>0000-0001-6310-6986 ; 0000-0001-6958-7389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Wang, Leying</creatorcontrib><creatorcontrib>Ge, Leijiao</creatorcontrib><creatorcontrib>Hou, Luyang</creatorcontrib><creatorcontrib>Du, Tianshuo</creatorcontrib><creatorcontrib>Zheng, Yiwen</creatorcontrib><creatorcontrib>Chen, Yanbo</creatorcontrib><title>A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction</title><title>Electronics (Basel)</title><description>Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Human error</subject><subject>Humidity</subject><subject>Methods</subject><subject>Missing data</subject><subject>Neural networks</subject><subject>Photovoltaic cells</subject><subject>Power plants</subject><subject>Prediction models</subject><subject>Radiation</subject><subject>Root-mean-square errors</subject><subject>Search algorithms</subject><subject>Solar power generation</subject><subject>Statistical analysis</subject><subject>Time of use</subject><subject>Time series</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9LAzEQxYMoWGo_gZeA59Uks3-PtbYqVCy0npfZbNZu2d2sSVbtwe9uaj14cGCYx_D4PXiEXHJ2DZCxG9Uo6Yzuamk58AQiiE_ISLAkCzKRidM_-pxMrN0xPxmHFNiIfE3pequNCzbKtHSlP5ShK6PKWrpad_RJua0uaaX9d6udfteNQx9Eb9GqknrHum7rBg29wz2dNYN1ytTdK8WupOsePcST214bbOhCoRuMovNPZ_CHf0HOKmysmvzeMXlZzDezh2D5fP84my4DKZhwQQg8KmRWxRmoFHkFCv1GrBAFZwlTpZAhsiREqIpICoijkCeYpDJmmIRxCGNydeT2Rr8Nyrp8pwfT-cgcOIM0BMYOLji6pNHWGlXlvalbNPucs_xQdf5P1fAN1dR11w</recordid><startdate>20240906</startdate><enddate>20240906</enddate><creator>Huang, Xu</creator><creator>Wang, Leying</creator><creator>Ge, Leijiao</creator><creator>Hou, Luyang</creator><creator>Du, Tianshuo</creator><creator>Zheng, Yiwen</creator><creator>Chen, Yanbo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6310-6986</orcidid><orcidid>https://orcid.org/0000-0001-6958-7389</orcidid></search><sort><creationdate>20240906</creationdate><title>A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction</title><author>Huang, Xu ; Wang, Leying ; Ge, Leijiao ; Hou, Luyang ; Du, Tianshuo ; Zheng, Yiwen ; Chen, Yanbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-4315bc9f693e8a1f3eaf3e50b2b1070ed2c4a074a3fb5c2365417a78c60a74643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Human error</topic><topic>Humidity</topic><topic>Methods</topic><topic>Missing data</topic><topic>Neural networks</topic><topic>Photovoltaic cells</topic><topic>Power plants</topic><topic>Prediction models</topic><topic>Radiation</topic><topic>Root-mean-square errors</topic><topic>Search algorithms</topic><topic>Solar power generation</topic><topic>Statistical analysis</topic><topic>Time of use</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Wang, Leying</creatorcontrib><creatorcontrib>Ge, Leijiao</creatorcontrib><creatorcontrib>Hou, Luyang</creatorcontrib><creatorcontrib>Du, Tianshuo</creatorcontrib><creatorcontrib>Zheng, Yiwen</creatorcontrib><creatorcontrib>Chen, Yanbo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xu</au><au>Wang, Leying</au><au>Ge, Leijiao</au><au>Hou, Luyang</au><au>Du, Tianshuo</au><au>Zheng, Yiwen</au><au>Chen, Yanbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-09-06</date><risdate>2024</risdate><volume>13</volume><issue>17</issue><spage>3536</spage><pages>3536-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13173536</doi><orcidid>https://orcid.org/0000-0001-6310-6986</orcidid><orcidid>https://orcid.org/0000-0001-6958-7389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-09, Vol.13 (17), p.3536
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3103843004
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Alternative energy sources
Artificial intelligence
Clustering
Datasets
Deep learning
Electricity distribution
Energy consumption
Error analysis
Feature extraction
Human error
Humidity
Methods
Missing data
Neural networks
Photovoltaic cells
Power plants
Prediction models
Radiation
Root-mean-square errors
Search algorithms
Solar power generation
Statistical analysis
Time of use
Time series
title A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Short-Term%20Power%20Prediction%20Method%20for%20Photovoltaics%20Based%20on%20Similar%20Day%20Clustering%20and%20Spatio-Temporal%20Feature%20Extraction&rft.jtitle=Electronics%20(Basel)&rft.au=Huang,%20Xu&rft.date=2024-09-06&rft.volume=13&rft.issue=17&rft.spage=3536&rft.pages=3536-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13173536&rft_dat=%3Cproquest_cross%3E3103843004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103843004&rft_id=info:pmid/&rfr_iscdi=true