A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction
Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-09, Vol.13 (17), p.3536 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 3536 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Huang, Xu Wang, Leying Ge, Leijiao Hou, Luyang Du, Tianshuo Zheng, Yiwen Chen, Yanbo |
description | Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method. |
doi_str_mv | 10.3390/electronics13173536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103843004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103843004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-4315bc9f693e8a1f3eaf3e50b2b1070ed2c4a074a3fb5c2365417a78c60a74643</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWGo_gZeA59Uks3-PtbYqVCy0npfZbNZu2d2sSVbtwe9uaj14cGCYx_D4PXiEXHJ2DZCxG9Uo6Yzuamk58AQiiE_ISLAkCzKRidM_-pxMrN0xPxmHFNiIfE3pequNCzbKtHSlP5ShK6PKWrpad_RJua0uaaX9d6udfteNQx9Eb9GqknrHum7rBg29wz2dNYN1ytTdK8WupOsePcST214bbOhCoRuMovNPZ_CHf0HOKmysmvzeMXlZzDezh2D5fP84my4DKZhwQQg8KmRWxRmoFHkFCv1GrBAFZwlTpZAhsiREqIpICoijkCeYpDJmmIRxCGNydeT2Rr8Nyrp8pwfT-cgcOIM0BMYOLji6pNHWGlXlvalbNPucs_xQdf5P1fAN1dR11w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103843004</pqid></control><display><type>article</type><title>A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Xu ; Wang, Leying ; Ge, Leijiao ; Hou, Luyang ; Du, Tianshuo ; Zheng, Yiwen ; Chen, Yanbo</creator><creatorcontrib>Huang, Xu ; Wang, Leying ; Ge, Leijiao ; Hou, Luyang ; Du, Tianshuo ; Zheng, Yiwen ; Chen, Yanbo</creatorcontrib><description>Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13173536</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Alternative energy sources ; Artificial intelligence ; Clustering ; Datasets ; Deep learning ; Electricity distribution ; Energy consumption ; Error analysis ; Feature extraction ; Human error ; Humidity ; Methods ; Missing data ; Neural networks ; Photovoltaic cells ; Power plants ; Prediction models ; Radiation ; Root-mean-square errors ; Search algorithms ; Solar power generation ; Statistical analysis ; Time of use ; Time series</subject><ispartof>Electronics (Basel), 2024-09, Vol.13 (17), p.3536</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c202t-4315bc9f693e8a1f3eaf3e50b2b1070ed2c4a074a3fb5c2365417a78c60a74643</cites><orcidid>0000-0001-6310-6986 ; 0000-0001-6958-7389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Wang, Leying</creatorcontrib><creatorcontrib>Ge, Leijiao</creatorcontrib><creatorcontrib>Hou, Luyang</creatorcontrib><creatorcontrib>Du, Tianshuo</creatorcontrib><creatorcontrib>Zheng, Yiwen</creatorcontrib><creatorcontrib>Chen, Yanbo</creatorcontrib><title>A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction</title><title>Electronics (Basel)</title><description>Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Human error</subject><subject>Humidity</subject><subject>Methods</subject><subject>Missing data</subject><subject>Neural networks</subject><subject>Photovoltaic cells</subject><subject>Power plants</subject><subject>Prediction models</subject><subject>Radiation</subject><subject>Root-mean-square errors</subject><subject>Search algorithms</subject><subject>Solar power generation</subject><subject>Statistical analysis</subject><subject>Time of use</subject><subject>Time series</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9LAzEQxYMoWGo_gZeA59Uks3-PtbYqVCy0npfZbNZu2d2sSVbtwe9uaj14cGCYx_D4PXiEXHJ2DZCxG9Uo6Yzuamk58AQiiE_ISLAkCzKRidM_-pxMrN0xPxmHFNiIfE3pequNCzbKtHSlP5ShK6PKWrpad_RJua0uaaX9d6udfteNQx9Eb9GqknrHum7rBg29wz2dNYN1ytTdK8WupOsePcST214bbOhCoRuMovNPZ_CHf0HOKmysmvzeMXlZzDezh2D5fP84my4DKZhwQQg8KmRWxRmoFHkFCv1GrBAFZwlTpZAhsiREqIpICoijkCeYpDJmmIRxCGNydeT2Rr8Nyrp8pwfT-cgcOIM0BMYOLji6pNHWGlXlvalbNPucs_xQdf5P1fAN1dR11w</recordid><startdate>20240906</startdate><enddate>20240906</enddate><creator>Huang, Xu</creator><creator>Wang, Leying</creator><creator>Ge, Leijiao</creator><creator>Hou, Luyang</creator><creator>Du, Tianshuo</creator><creator>Zheng, Yiwen</creator><creator>Chen, Yanbo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6310-6986</orcidid><orcidid>https://orcid.org/0000-0001-6958-7389</orcidid></search><sort><creationdate>20240906</creationdate><title>A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction</title><author>Huang, Xu ; Wang, Leying ; Ge, Leijiao ; Hou, Luyang ; Du, Tianshuo ; Zheng, Yiwen ; Chen, Yanbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-4315bc9f693e8a1f3eaf3e50b2b1070ed2c4a074a3fb5c2365417a78c60a74643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Human error</topic><topic>Humidity</topic><topic>Methods</topic><topic>Missing data</topic><topic>Neural networks</topic><topic>Photovoltaic cells</topic><topic>Power plants</topic><topic>Prediction models</topic><topic>Radiation</topic><topic>Root-mean-square errors</topic><topic>Search algorithms</topic><topic>Solar power generation</topic><topic>Statistical analysis</topic><topic>Time of use</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Wang, Leying</creatorcontrib><creatorcontrib>Ge, Leijiao</creatorcontrib><creatorcontrib>Hou, Luyang</creatorcontrib><creatorcontrib>Du, Tianshuo</creatorcontrib><creatorcontrib>Zheng, Yiwen</creatorcontrib><creatorcontrib>Chen, Yanbo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xu</au><au>Wang, Leying</au><au>Ge, Leijiao</au><au>Hou, Luyang</au><au>Du, Tianshuo</au><au>Zheng, Yiwen</au><au>Chen, Yanbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-09-06</date><risdate>2024</risdate><volume>13</volume><issue>17</issue><spage>3536</spage><pages>3536-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13173536</doi><orcidid>https://orcid.org/0000-0001-6310-6986</orcidid><orcidid>https://orcid.org/0000-0001-6958-7389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-09, Vol.13 (17), p.3536 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3103843004 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Alternative energy sources Artificial intelligence Clustering Datasets Deep learning Electricity distribution Energy consumption Error analysis Feature extraction Human error Humidity Methods Missing data Neural networks Photovoltaic cells Power plants Prediction models Radiation Root-mean-square errors Search algorithms Solar power generation Statistical analysis Time of use Time series |
title | A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Short-Term%20Power%20Prediction%20Method%20for%20Photovoltaics%20Based%20on%20Similar%20Day%20Clustering%20and%20Spatio-Temporal%20Feature%20Extraction&rft.jtitle=Electronics%20(Basel)&rft.au=Huang,%20Xu&rft.date=2024-09-06&rft.volume=13&rft.issue=17&rft.spage=3536&rft.pages=3536-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13173536&rft_dat=%3Cproquest_cross%3E3103843004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103843004&rft_id=info:pmid/&rfr_iscdi=true |