Improved algebraic fibrings
We show that a virtually residually finite rationally solvable (RFRS) group $G$ of type $\mathtt {FP}_n(\mathbb {Q})$ virtually algebraically fibres with kernel of type $\mathtt {FP}_n(\mathbb {Q})$ if and only if the first $n$ $\ell ^2$-Betti numbers of $G$ vanish, that is, $b_p^{(2)}(G) = 0$ for $...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2024-09, Vol.160 (9), p.2203-2227 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2227 |
---|---|
container_issue | 9 |
container_start_page | 2203 |
container_title | Compositio mathematica |
container_volume | 160 |
creator | Fisher, Sam P. |
description | We show that a virtually residually finite rationally solvable (RFRS) group $G$ of type $\mathtt {FP}_n(\mathbb {Q})$ virtually algebraically fibres with kernel of type $\mathtt {FP}_n(\mathbb {Q})$ if and only if the first $n$ $\ell ^2$-Betti numbers of $G$ vanish, that is, $b_p^{(2)}(G) = 0$ for $0 \leqslant p \leqslant n$. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$ are virtually Abelian. It then follows that if $G$ is a virtually RFRS group of type $\mathtt {FP}(\mathbb {Q})$ such that $\mathbb {Z} G$ is Noetherian, then $G$ is virtually Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$, which includes (for instance) the class of virtually compact special groups. |
doi_str_mv | 10.1112/S0010437X24007309 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103840471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X24007309</cupid><sourcerecordid>3103840471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-1ad3892202679063d6ec0d6baabaeefdd2cea5c0ad2692be002f1006cc43f7453</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWP0B4qXgOTozu9lNjlK0FgoeVPAWNvsRUpqm7raC_94NLXgQT3N4X_MeY9cId4hI968ACIKrDxIAikN1wjIsFORFKeQpy0Y4H_FzdhHjCgCopDJjN4t-G4YvZ6d63bom6M5MfdeEbtPGS3bm9Tq6q-OdsPenx7fZc758mS9mD8vckKBdjtrysiICkqoCya10BqxstG60c95aMk4XBrQlWVHjUrRHAGmM4F6Jgk_Y7cE3ffK5d3FXr4Z92KTImiPwUoBQmFh4YJkwxBicr7eh63X4rhHqcYP6zwZJw48a3adOtnW_1v-rfgDmbVxl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103840471</pqid></control><display><type>article</type><title>Improved algebraic fibrings</title><source>Cambridge University Press Journals Complete</source><creator>Fisher, Sam P.</creator><creatorcontrib>Fisher, Sam P.</creatorcontrib><description>We show that a virtually residually finite rationally solvable (RFRS) group $G$ of type $\mathtt {FP}_n(\mathbb {Q})$ virtually algebraically fibres with kernel of type $\mathtt {FP}_n(\mathbb {Q})$ if and only if the first $n$ $\ell ^2$-Betti numbers of $G$ vanish, that is, $b_p^{(2)}(G) = 0$ for $0 \leqslant p \leqslant n$. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$ are virtually Abelian. It then follows that if $G$ is a virtually RFRS group of type $\mathtt {FP}(\mathbb {Q})$ such that $\mathbb {Z} G$ is Noetherian, then $G$ is virtually Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$, which includes (for instance) the class of virtually compact special groups.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X24007309</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algebra</subject><ispartof>Compositio mathematica, 2024-09, Vol.160 (9), p.2203-2227</ispartof><rights>The Author(s), 2024. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0769-1361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X24007309/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Fisher, Sam P.</creatorcontrib><title>Improved algebraic fibrings</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We show that a virtually residually finite rationally solvable (RFRS) group $G$ of type $\mathtt {FP}_n(\mathbb {Q})$ virtually algebraically fibres with kernel of type $\mathtt {FP}_n(\mathbb {Q})$ if and only if the first $n$ $\ell ^2$-Betti numbers of $G$ vanish, that is, $b_p^{(2)}(G) = 0$ for $0 \leqslant p \leqslant n$. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$ are virtually Abelian. It then follows that if $G$ is a virtually RFRS group of type $\mathtt {FP}(\mathbb {Q})$ such that $\mathbb {Z} G$ is Noetherian, then $G$ is virtually Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$, which includes (for instance) the class of virtually compact special groups.</description><subject>Algebra</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQXUTBWP0B4qXgOTozu9lNjlK0FgoeVPAWNvsRUpqm7raC_94NLXgQT3N4X_MeY9cId4hI968ACIKrDxIAikN1wjIsFORFKeQpy0Y4H_FzdhHjCgCopDJjN4t-G4YvZ6d63bom6M5MfdeEbtPGS3bm9Tq6q-OdsPenx7fZc758mS9mD8vckKBdjtrysiICkqoCya10BqxstG60c95aMk4XBrQlWVHjUrRHAGmM4F6Jgk_Y7cE3ffK5d3FXr4Z92KTImiPwUoBQmFh4YJkwxBicr7eh63X4rhHqcYP6zwZJw48a3adOtnW_1v-rfgDmbVxl</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fisher, Sam P.</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0769-1361</orcidid></search><sort><creationdate>20240901</creationdate><title>Improved algebraic fibrings</title><author>Fisher, Sam P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-1ad3892202679063d6ec0d6baabaeefdd2cea5c0ad2692be002f1006cc43f7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, Sam P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, Sam P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved algebraic fibrings</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>160</volume><issue>9</issue><spage>2203</spage><epage>2227</epage><pages>2203-2227</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We show that a virtually residually finite rationally solvable (RFRS) group $G$ of type $\mathtt {FP}_n(\mathbb {Q})$ virtually algebraically fibres with kernel of type $\mathtt {FP}_n(\mathbb {Q})$ if and only if the first $n$ $\ell ^2$-Betti numbers of $G$ vanish, that is, $b_p^{(2)}(G) = 0$ for $0 \leqslant p \leqslant n$. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$ are virtually Abelian. It then follows that if $G$ is a virtually RFRS group of type $\mathtt {FP}(\mathbb {Q})$ such that $\mathbb {Z} G$ is Noetherian, then $G$ is virtually Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$, which includes (for instance) the class of virtually compact special groups.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X24007309</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0769-1361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2024-09, Vol.160 (9), p.2203-2227 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_3103840471 |
source | Cambridge University Press Journals Complete |
subjects | Algebra |
title | Improved algebraic fibrings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20algebraic%20fibrings&rft.jtitle=Compositio%20mathematica&rft.au=Fisher,%20Sam%20P.&rft.date=2024-09-01&rft.volume=160&rft.issue=9&rft.spage=2203&rft.epage=2227&rft.pages=2203-2227&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X24007309&rft_dat=%3Cproquest_cross%3E3103840471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103840471&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X24007309&rfr_iscdi=true |