Large-scale circulation reversals explained by pendulum correspondence
We introduce a low-order dynamical system to describe thermal convection in an annular domain. The model derives systematically from a Fourier–Laurent truncation of the governing Navier–Stokes Boussinesq equations and accounts for spatial dependence of the flow and temperature fields. Comparison wit...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2024-09, Vol.993, Article A3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 993 |
creator | Moore, Nicholas J. Huang, Jinzi Mac |
description | We introduce a low-order dynamical system to describe thermal convection in an annular domain. The model derives systematically from a Fourier–Laurent truncation of the governing Navier–Stokes Boussinesq equations and accounts for spatial dependence of the flow and temperature fields. Comparison with fully resolved direct numerical simulations (DNS) shows that the model captures parameter bifurcations and reversals of the large-scale circulation (LSC), including states of (i) steady circulating flow, (ii) chaotic LSC reversals and (iii) periodic LSC reversals. Casting the system in terms of the fluid's angular momentum and centre of mass (CoM) reveals equivalence to a damped pendulum with forcing that raises the CoM above the fulcrum. This formulation offers a transparent mechanism for LSC reversals, namely the inertial overshoot of a forced pendulum, and it yields an explicit formula for the frequency $f^*$ of regular LSC reversals in the high-Rayleigh-number (Ra) limit. This formula is shown to be in excellent agreement with DNS and produces the scaling law $f^* \sim {Ra}^{0.5}$. |
doi_str_mv | 10.1017/jfm.2024.584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103705155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_584</cupid><sourcerecordid>3103705155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-7723969208be9b2f3f3e557b7d9443aebb60c3faf6501e2b976e31eb6cd443a13</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMoWKs7f8CAW2d8SSZJs5Riq1Bwo-uQZF7KlPky6Yj9905pwY2ru3jn3QuHkHsKBQWqnnahLRiwshCL8oLMaCl1rmQpLskMgLGcUgbX5CalHQDloNWMrDY2bjFP3jaY-Tr6sbH7uu-yiN8Yk21Shj9DY-sOq8wdsgG7amzGNvN9jJiGvquw83hLrsLE4t055-Rz9fKxfM037-u35fMm94ypfa4U41pqBguH2rHAA0chlFOVLktu0TkJngcbpACKzGklkVN00lfHO-Vz8nDqHWL_NWLam10_xm6aNJwCVyCoEBP1eKJ87FOKGMwQ69bGg6FgjqbMZMocTZnJ1IQXZ9y2LtbVFv9a_334BfnMa2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103705155</pqid></control><display><type>article</type><title>Large-scale circulation reversals explained by pendulum correspondence</title><source>Cambridge University Press Journals Complete</source><creator>Moore, Nicholas J. ; Huang, Jinzi Mac</creator><creatorcontrib>Moore, Nicholas J. ; Huang, Jinzi Mac</creatorcontrib><description>We introduce a low-order dynamical system to describe thermal convection in an annular domain. The model derives systematically from a Fourier–Laurent truncation of the governing Navier–Stokes Boussinesq equations and accounts for spatial dependence of the flow and temperature fields. Comparison with fully resolved direct numerical simulations (DNS) shows that the model captures parameter bifurcations and reversals of the large-scale circulation (LSC), including states of (i) steady circulating flow, (ii) chaotic LSC reversals and (iii) periodic LSC reversals. Casting the system in terms of the fluid's angular momentum and centre of mass (CoM) reveals equivalence to a damped pendulum with forcing that raises the CoM above the fulcrum. This formulation offers a transparent mechanism for LSC reversals, namely the inertial overshoot of a forced pendulum, and it yields an explicit formula for the frequency $f^*$ of regular LSC reversals in the high-Rayleigh-number (Ra) limit. This formula is shown to be in excellent agreement with DNS and produces the scaling law $f^* \sim {Ra}^{0.5}$.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.584</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Angular momentum ; Bifurcations ; Boussinesq approximation ; Boussinesq equations ; Cellular convection ; Chaos theory ; Convection ; Direct numerical simulation ; Domain names ; Dynamical systems ; Free convection ; JFM Papers ; Momentum ; Pendulums ; Rayleigh number ; Scaling ; Scaling laws ; Simulation ; Temperature dependence ; Temperature fields</subject><ispartof>Journal of fluid mechanics, 2024-09, Vol.993, Article A3</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press.</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-7723969208be9b2f3f3e557b7d9443aebb60c3faf6501e2b976e31eb6cd443a13</cites><orcidid>0000-0001-9578-7982 ; 0000-0003-4277-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024005846/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Moore, Nicholas J.</creatorcontrib><creatorcontrib>Huang, Jinzi Mac</creatorcontrib><title>Large-scale circulation reversals explained by pendulum correspondence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We introduce a low-order dynamical system to describe thermal convection in an annular domain. The model derives systematically from a Fourier–Laurent truncation of the governing Navier–Stokes Boussinesq equations and accounts for spatial dependence of the flow and temperature fields. Comparison with fully resolved direct numerical simulations (DNS) shows that the model captures parameter bifurcations and reversals of the large-scale circulation (LSC), including states of (i) steady circulating flow, (ii) chaotic LSC reversals and (iii) periodic LSC reversals. Casting the system in terms of the fluid's angular momentum and centre of mass (CoM) reveals equivalence to a damped pendulum with forcing that raises the CoM above the fulcrum. This formulation offers a transparent mechanism for LSC reversals, namely the inertial overshoot of a forced pendulum, and it yields an explicit formula for the frequency $f^*$ of regular LSC reversals in the high-Rayleigh-number (Ra) limit. This formula is shown to be in excellent agreement with DNS and produces the scaling law $f^* \sim {Ra}^{0.5}$.</description><subject>Angular momentum</subject><subject>Bifurcations</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Cellular convection</subject><subject>Chaos theory</subject><subject>Convection</subject><subject>Direct numerical simulation</subject><subject>Domain names</subject><subject>Dynamical systems</subject><subject>Free convection</subject><subject>JFM Papers</subject><subject>Momentum</subject><subject>Pendulums</subject><subject>Rayleigh number</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Simulation</subject><subject>Temperature dependence</subject><subject>Temperature fields</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkE1LAzEURYMoWKs7f8CAW2d8SSZJs5Riq1Bwo-uQZF7KlPky6Yj9905pwY2ru3jn3QuHkHsKBQWqnnahLRiwshCL8oLMaCl1rmQpLskMgLGcUgbX5CalHQDloNWMrDY2bjFP3jaY-Tr6sbH7uu-yiN8Yk21Shj9DY-sOq8wdsgG7amzGNvN9jJiGvquw83hLrsLE4t055-Rz9fKxfM037-u35fMm94ypfa4U41pqBguH2rHAA0chlFOVLktu0TkJngcbpACKzGklkVN00lfHO-Vz8nDqHWL_NWLam10_xm6aNJwCVyCoEBP1eKJ87FOKGMwQ69bGg6FgjqbMZMocTZnJ1IQXZ9y2LtbVFv9a_334BfnMa2w</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Moore, Nicholas J.</creator><creator>Huang, Jinzi Mac</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9578-7982</orcidid><orcidid>https://orcid.org/0000-0003-4277-5851</orcidid></search><sort><creationdate>20240913</creationdate><title>Large-scale circulation reversals explained by pendulum correspondence</title><author>Moore, Nicholas J. ; Huang, Jinzi Mac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-7723969208be9b2f3f3e557b7d9443aebb60c3faf6501e2b976e31eb6cd443a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angular momentum</topic><topic>Bifurcations</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Cellular convection</topic><topic>Chaos theory</topic><topic>Convection</topic><topic>Direct numerical simulation</topic><topic>Domain names</topic><topic>Dynamical systems</topic><topic>Free convection</topic><topic>JFM Papers</topic><topic>Momentum</topic><topic>Pendulums</topic><topic>Rayleigh number</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Simulation</topic><topic>Temperature dependence</topic><topic>Temperature fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Nicholas J.</creatorcontrib><creatorcontrib>Huang, Jinzi Mac</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Nicholas J.</au><au>Huang, Jinzi Mac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale circulation reversals explained by pendulum correspondence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-09-13</date><risdate>2024</risdate><volume>993</volume><artnum>A3</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We introduce a low-order dynamical system to describe thermal convection in an annular domain. The model derives systematically from a Fourier–Laurent truncation of the governing Navier–Stokes Boussinesq equations and accounts for spatial dependence of the flow and temperature fields. Comparison with fully resolved direct numerical simulations (DNS) shows that the model captures parameter bifurcations and reversals of the large-scale circulation (LSC), including states of (i) steady circulating flow, (ii) chaotic LSC reversals and (iii) periodic LSC reversals. Casting the system in terms of the fluid's angular momentum and centre of mass (CoM) reveals equivalence to a damped pendulum with forcing that raises the CoM above the fulcrum. This formulation offers a transparent mechanism for LSC reversals, namely the inertial overshoot of a forced pendulum, and it yields an explicit formula for the frequency $f^*$ of regular LSC reversals in the high-Rayleigh-number (Ra) limit. This formula is shown to be in excellent agreement with DNS and produces the scaling law $f^* \sim {Ra}^{0.5}$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.584</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9578-7982</orcidid><orcidid>https://orcid.org/0000-0003-4277-5851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2024-09, Vol.993, Article A3 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_3103705155 |
source | Cambridge University Press Journals Complete |
subjects | Angular momentum Bifurcations Boussinesq approximation Boussinesq equations Cellular convection Chaos theory Convection Direct numerical simulation Domain names Dynamical systems Free convection JFM Papers Momentum Pendulums Rayleigh number Scaling Scaling laws Simulation Temperature dependence Temperature fields |
title | Large-scale circulation reversals explained by pendulum correspondence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20circulation%20reversals%20explained%20by%20pendulum%20correspondence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Moore,%20Nicholas%20J.&rft.date=2024-09-13&rft.volume=993&rft.artnum=A3&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.584&rft_dat=%3Cproquest_cross%3E3103705155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103705155&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_584&rfr_iscdi=true |