A comprehensive study on social networks analysis and mining to detect opinion leaders

In today's society, social networks are vital for communication, allowing individuals to influence each other significantly. Opinion leaders play a crucial role in shaping opinions, attitudes, beliefs, motivations, and behaviors. Recognizing this, companies seek to identify influential users wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers & applications 2024-08, Vol.46 (8), p.641-650
Hauptverfasser: Oueslati, Wided, Mejri, Siwar, Akaichi, Jalel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In today's society, social networks are vital for communication, allowing individuals to influence each other significantly. Opinion leaders play a crucial role in shaping opinions, attitudes, beliefs, motivations, and behaviors. Recognizing this, companies seek to identify influential users who resonate with their target audience to leverage their impact. Consequently, detecting opinion leaders in social networks has become essential. This paper aims to provide a comprehensive literature review on opinion leader detection. We present a detailed overview of various methods and approaches developed in this field, examining their strengths and weaknesses to identify the most effective strategies for different social networks. Additionally, we highlight key trends, challenges, and future directions in opinion leader detection. Our goal is to equip companies with the necessary knowledge to harness the power of opinion leaders for enhancing marketing and communication strategies. For researchers, this paper serves as a foundational resource, outlining the current state of the art and identifying gaps in the literature for future studies. Ultimately, we strive to advance the understanding of effective opinion leader detection and utilization within the dynamic landscape of social networks.
ISSN:1206-212X
1925-7074
DOI:10.1080/1206212X.2024.2380655