Recurrent neural networks as virtual cavity pressure and temperature sensors in high-pressure die casting

High-pressure die casting (HPDC) is a permanent mold-based production technology that facilitates the casting of near net shape components from nonferrous alloys. The pressure and temperature conditions within the cavity impact the cast product quality during and after the conclusion of the die fill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2024-10, Vol.134 (7-8), p.3267-3280
Hauptverfasser: Rudack, Maximilian, Rom, Michael, Bruckmeier, Lukas, Moser, Mario, Pustal, Björn, Bührig-Polaczek, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3280
container_issue 7-8
container_start_page 3267
container_title International journal of advanced manufacturing technology
container_volume 134
creator Rudack, Maximilian
Rom, Michael
Bruckmeier, Lukas
Moser, Mario
Pustal, Björn
Bührig-Polaczek, Andreas
description High-pressure die casting (HPDC) is a permanent mold-based production technology that facilitates the casting of near net shape components from nonferrous alloys. The pressure and temperature conditions within the cavity impact the cast product quality during and after the conclusion of the die filling process. Die surface cavity sensors can deliver information describing the conditions at the die-casting interface. They are associated with high costs and limited service lifetimes below the achievable total cycle count of the die inserts and therefore ill-suited for industrial use cases. In this work, the suitability of long short-term memory (LSTM) recurrent neural networks (RNN) for substituting physical cavity temperature and pressure sensors virtually after the production ramp-up or at the end of the sensor service life is investigated. Training LSTMs with data of 233 casting cycles with different process parameters provides networks which are then applied to 99 further cycles. The prediction accuracy is investigated for different time interval lengths in the solidification and cooling phase. For longer time intervals, the cavity pressure prediction deteriorates, potentially due to a highly individual and hardly ascertainable buildup of casting distortion and internal stresses. Overall, however, the accuracy of the developed LSTMs is excellent for the cavity temperatures and good for the cavity pressures.
doi_str_mv 10.1007/s00170-024-14270-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103646238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103646238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-1982867c06a28811f86ea062fcb6aad5e11e091ddd961facfccb28a8325062ad3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA82om2WbToxT_QUEQPYc0m21T2-w6yVb67U1d0ZunNzP83ht4hFwCuwbGqpvIGFSsYLwsoOR5UkdkBKUQhWAwOSYjxqUqRCXVKTmLcZ1xCVKNiH9xtkd0IdHgejSbLOmzxfdITaQ7j6nPN2t2Pu1phy7GHh01oabJbTuHJh326EJsMVIf6MovV8UvWHuXzTH5sDwnJ43ZRHfxo2Pydn_3Onss5s8PT7PbeWF5WaYCpoorWVkmDVcKoFHSGSZ5YxfSmHriABybQl3XUwmNsY21C66MEnySKVOLMbkacjtsP3oXk163PYb8UgtgQpaSC5UpPlAW2xjRNbpDvzW418D0oVI9VKpzpfq7Un0wicEUMxyWDv-i_3F9AUG6e6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103646238</pqid></control><display><type>article</type><title>Recurrent neural networks as virtual cavity pressure and temperature sensors in high-pressure die casting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rudack, Maximilian ; Rom, Michael ; Bruckmeier, Lukas ; Moser, Mario ; Pustal, Björn ; Bührig-Polaczek, Andreas</creator><creatorcontrib>Rudack, Maximilian ; Rom, Michael ; Bruckmeier, Lukas ; Moser, Mario ; Pustal, Björn ; Bührig-Polaczek, Andreas</creatorcontrib><description>High-pressure die casting (HPDC) is a permanent mold-based production technology that facilitates the casting of near net shape components from nonferrous alloys. The pressure and temperature conditions within the cavity impact the cast product quality during and after the conclusion of the die filling process. Die surface cavity sensors can deliver information describing the conditions at the die-casting interface. They are associated with high costs and limited service lifetimes below the achievable total cycle count of the die inserts and therefore ill-suited for industrial use cases. In this work, the suitability of long short-term memory (LSTM) recurrent neural networks (RNN) for substituting physical cavity temperature and pressure sensors virtually after the production ramp-up or at the end of the sensor service life is investigated. Training LSTMs with data of 233 casting cycles with different process parameters provides networks which are then applied to 99 further cycles. The prediction accuracy is investigated for different time interval lengths in the solidification and cooling phase. For longer time intervals, the cavity pressure prediction deteriorates, potentially due to a highly individual and hardly ascertainable buildup of casting distortion and internal stresses. Overall, however, the accuracy of the developed LSTMs is excellent for the cavity temperatures and good for the cavity pressures.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-14270-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Casting ; Casting alloys ; Casting inserts ; Computer-Aided Engineering (CAD ; Engineering ; Foundry practice ; High pressure ; Industrial and Production Engineering ; Industrial applications ; Inserts ; Mechanical Engineering ; Media Management ; Near net shaping ; Neural networks ; Nonferrous alloys ; Original Article ; Permanent mold casting ; Permanent molds ; Pressure die casting ; Pressure sensors ; Process parameters ; Recurrent neural networks ; Residual stress ; Sensors ; Service life ; Solidification ; Temperature ; Temperature sensors ; Virtual networks</subject><ispartof>International journal of advanced manufacturing technology, 2024-10, Vol.134 (7-8), p.3267-3280</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-1982867c06a28811f86ea062fcb6aad5e11e091ddd961facfccb28a8325062ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-14270-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-14270-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rudack, Maximilian</creatorcontrib><creatorcontrib>Rom, Michael</creatorcontrib><creatorcontrib>Bruckmeier, Lukas</creatorcontrib><creatorcontrib>Moser, Mario</creatorcontrib><creatorcontrib>Pustal, Björn</creatorcontrib><creatorcontrib>Bührig-Polaczek, Andreas</creatorcontrib><title>Recurrent neural networks as virtual cavity pressure and temperature sensors in high-pressure die casting</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>High-pressure die casting (HPDC) is a permanent mold-based production technology that facilitates the casting of near net shape components from nonferrous alloys. The pressure and temperature conditions within the cavity impact the cast product quality during and after the conclusion of the die filling process. Die surface cavity sensors can deliver information describing the conditions at the die-casting interface. They are associated with high costs and limited service lifetimes below the achievable total cycle count of the die inserts and therefore ill-suited for industrial use cases. In this work, the suitability of long short-term memory (LSTM) recurrent neural networks (RNN) for substituting physical cavity temperature and pressure sensors virtually after the production ramp-up or at the end of the sensor service life is investigated. Training LSTMs with data of 233 casting cycles with different process parameters provides networks which are then applied to 99 further cycles. The prediction accuracy is investigated for different time interval lengths in the solidification and cooling phase. For longer time intervals, the cavity pressure prediction deteriorates, potentially due to a highly individual and hardly ascertainable buildup of casting distortion and internal stresses. Overall, however, the accuracy of the developed LSTMs is excellent for the cavity temperatures and good for the cavity pressures.</description><subject>CAE) and Design</subject><subject>Casting</subject><subject>Casting alloys</subject><subject>Casting inserts</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Foundry practice</subject><subject>High pressure</subject><subject>Industrial and Production Engineering</subject><subject>Industrial applications</subject><subject>Inserts</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Near net shaping</subject><subject>Neural networks</subject><subject>Nonferrous alloys</subject><subject>Original Article</subject><subject>Permanent mold casting</subject><subject>Permanent molds</subject><subject>Pressure die casting</subject><subject>Pressure sensors</subject><subject>Process parameters</subject><subject>Recurrent neural networks</subject><subject>Residual stress</subject><subject>Sensors</subject><subject>Service life</subject><subject>Solidification</subject><subject>Temperature</subject><subject>Temperature sensors</subject><subject>Virtual networks</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPA82om2WbToxT_QUEQPYc0m21T2-w6yVb67U1d0ZunNzP83ht4hFwCuwbGqpvIGFSsYLwsoOR5UkdkBKUQhWAwOSYjxqUqRCXVKTmLcZ1xCVKNiH9xtkd0IdHgejSbLOmzxfdITaQ7j6nPN2t2Pu1phy7GHh01oabJbTuHJh326EJsMVIf6MovV8UvWHuXzTH5sDwnJ43ZRHfxo2Pydn_3Onss5s8PT7PbeWF5WaYCpoorWVkmDVcKoFHSGSZ5YxfSmHriABybQl3XUwmNsY21C66MEnySKVOLMbkacjtsP3oXk163PYb8UgtgQpaSC5UpPlAW2xjRNbpDvzW418D0oVI9VKpzpfq7Un0wicEUMxyWDv-i_3F9AUG6e6A</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Rudack, Maximilian</creator><creator>Rom, Michael</creator><creator>Bruckmeier, Lukas</creator><creator>Moser, Mario</creator><creator>Pustal, Björn</creator><creator>Bührig-Polaczek, Andreas</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Recurrent neural networks as virtual cavity pressure and temperature sensors in high-pressure die casting</title><author>Rudack, Maximilian ; Rom, Michael ; Bruckmeier, Lukas ; Moser, Mario ; Pustal, Björn ; Bührig-Polaczek, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-1982867c06a28811f86ea062fcb6aad5e11e091ddd961facfccb28a8325062ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CAE) and Design</topic><topic>Casting</topic><topic>Casting alloys</topic><topic>Casting inserts</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Foundry practice</topic><topic>High pressure</topic><topic>Industrial and Production Engineering</topic><topic>Industrial applications</topic><topic>Inserts</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Near net shaping</topic><topic>Neural networks</topic><topic>Nonferrous alloys</topic><topic>Original Article</topic><topic>Permanent mold casting</topic><topic>Permanent molds</topic><topic>Pressure die casting</topic><topic>Pressure sensors</topic><topic>Process parameters</topic><topic>Recurrent neural networks</topic><topic>Residual stress</topic><topic>Sensors</topic><topic>Service life</topic><topic>Solidification</topic><topic>Temperature</topic><topic>Temperature sensors</topic><topic>Virtual networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudack, Maximilian</creatorcontrib><creatorcontrib>Rom, Michael</creatorcontrib><creatorcontrib>Bruckmeier, Lukas</creatorcontrib><creatorcontrib>Moser, Mario</creatorcontrib><creatorcontrib>Pustal, Björn</creatorcontrib><creatorcontrib>Bührig-Polaczek, Andreas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudack, Maximilian</au><au>Rom, Michael</au><au>Bruckmeier, Lukas</au><au>Moser, Mario</au><au>Pustal, Björn</au><au>Bührig-Polaczek, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent neural networks as virtual cavity pressure and temperature sensors in high-pressure die casting</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>134</volume><issue>7-8</issue><spage>3267</spage><epage>3280</epage><pages>3267-3280</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>High-pressure die casting (HPDC) is a permanent mold-based production technology that facilitates the casting of near net shape components from nonferrous alloys. The pressure and temperature conditions within the cavity impact the cast product quality during and after the conclusion of the die filling process. Die surface cavity sensors can deliver information describing the conditions at the die-casting interface. They are associated with high costs and limited service lifetimes below the achievable total cycle count of the die inserts and therefore ill-suited for industrial use cases. In this work, the suitability of long short-term memory (LSTM) recurrent neural networks (RNN) for substituting physical cavity temperature and pressure sensors virtually after the production ramp-up or at the end of the sensor service life is investigated. Training LSTMs with data of 233 casting cycles with different process parameters provides networks which are then applied to 99 further cycles. The prediction accuracy is investigated for different time interval lengths in the solidification and cooling phase. For longer time intervals, the cavity pressure prediction deteriorates, potentially due to a highly individual and hardly ascertainable buildup of casting distortion and internal stresses. Overall, however, the accuracy of the developed LSTMs is excellent for the cavity temperatures and good for the cavity pressures.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-14270-8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-10, Vol.134 (7-8), p.3267-3280
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3103646238
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Casting
Casting alloys
Casting inserts
Computer-Aided Engineering (CAD
Engineering
Foundry practice
High pressure
Industrial and Production Engineering
Industrial applications
Inserts
Mechanical Engineering
Media Management
Near net shaping
Neural networks
Nonferrous alloys
Original Article
Permanent mold casting
Permanent molds
Pressure die casting
Pressure sensors
Process parameters
Recurrent neural networks
Residual stress
Sensors
Service life
Solidification
Temperature
Temperature sensors
Virtual networks
title Recurrent neural networks as virtual cavity pressure and temperature sensors in high-pressure die casting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20neural%20networks%20as%20virtual%20cavity%20pressure%20and%20temperature%20sensors%20in%20high-pressure%20die%20casting&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Rudack,%20Maximilian&rft.date=2024-10-01&rft.volume=134&rft.issue=7-8&rft.spage=3267&rft.epage=3280&rft.pages=3267-3280&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-14270-8&rft_dat=%3Cproquest_cross%3E3103646238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103646238&rft_id=info:pmid/&rfr_iscdi=true