Process parameter optimization of submerged arc welding on mild steel AISI 1020 using an artificial neural network trained with multi-objective Jaya algorithm
Submerged arc welding (SAW), renowned for its high deposition rate and superior weld quality, is the go-to method for joining thick metals in heavy structures. However, industry beams and columns welded with SAW can exhibit detrimental defects like undercut, porosity, and burn-through, significantly...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2024-10, Vol.134 (7-8), p.3877-3891 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3891 |
---|---|
container_issue | 7-8 |
container_start_page | 3877 |
container_title | International journal of advanced manufacturing technology |
container_volume | 134 |
creator | Zelalem, Yilikal Azene Tsegaw, Assefa Asmare |
description | Submerged arc welding (SAW), renowned for its high deposition rate and superior weld quality, is the go-to method for joining thick metals in heavy structures. However, industry beams and columns welded with SAW can exhibit detrimental defects like undercut, porosity, and burn-through, significantly impacting weld properties. This study addresses this challenge by presenting a multi-objective optimization approach for SAW parameters on AISI 1020 mild steel. Aiming to optimize tensile strength, hardness, and bead width, the study employs Taguchi’s design of experiments and couples the multi-objective Jaya algorithm with an artificial neural network (ANN). This synergistic combination yielded optimal process parameters: 417 A welding current, 20.7 mm electrode stick-out, 33.7 V voltage, and 505.8 mm/min transverse speed. These settings translated into exceptional weld characteristics, with ultimate tensile strength reaching 427 MPa, hardness of 73.9 HRB, and bead width of 14.29 mm. Confirmation tests further validated these findings, demonstrating minimal error and solidifying the effectiveness of the optimization approach. This research paves the way for enhanced weld quality and process control in heavy structural applications. |
doi_str_mv | 10.1007/s00170-024-14323-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103646114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103646114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-666b1943f915d1b7cee2a86a7ffaf52afbf7aeb004c82f5d02c290af3cc28cee3</originalsourceid><addsrcrecordid>eNp9kUGLFDEQhYMoOI7-AU8Bz9FK0pPuOS6LuiMLK6jnUJ2ujBm7O2OSdhh_jL_V7I7gbU9V8L73Cuox9lrCWwnQvssAsgUBqhGy0UqL8xO2qpsWGuTmKVuBMp3Qremesxc5HypupOlW7M_nFB3lzI-YcKJCicdjCVP4jSXEmUfP89JPlPY0cEyOn2gcwrznVZvCOPBciEZ-tfuy4xIU8CXfqzhXuAQfXMCRz7Skh1FOMf3gJWGYa9wplO98WsYSROwP5Er4RfwTnpHjuI-pqtNL9szjmOnVv7lm3z68_3p9I27vPu6ur26FUwBFGGN6uW2038rNIPvWESnsDLbeo98o9L1vkXqAxnXKbwZQTm0BvXZOdRXWa_bmkntM8edCudhDXNJcT1otQZvGyPrNNVMXyqWYcyJvjylMmM5Wgr3vwV56sLUH-9CDPVeTvphyhec9pf_Rj7j-AlGOj1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103646114</pqid></control><display><type>article</type><title>Process parameter optimization of submerged arc welding on mild steel AISI 1020 using an artificial neural network trained with multi-objective Jaya algorithm</title><source>SpringerNature Journals</source><creator>Zelalem, Yilikal Azene ; Tsegaw, Assefa Asmare</creator><creatorcontrib>Zelalem, Yilikal Azene ; Tsegaw, Assefa Asmare</creatorcontrib><description>Submerged arc welding (SAW), renowned for its high deposition rate and superior weld quality, is the go-to method for joining thick metals in heavy structures. However, industry beams and columns welded with SAW can exhibit detrimental defects like undercut, porosity, and burn-through, significantly impacting weld properties. This study addresses this challenge by presenting a multi-objective optimization approach for SAW parameters on AISI 1020 mild steel. Aiming to optimize tensile strength, hardness, and bead width, the study employs Taguchi’s design of experiments and couples the multi-objective Jaya algorithm with an artificial neural network (ANN). This synergistic combination yielded optimal process parameters: 417 A welding current, 20.7 mm electrode stick-out, 33.7 V voltage, and 505.8 mm/min transverse speed. These settings translated into exceptional weld characteristics, with ultimate tensile strength reaching 427 MPa, hardness of 73.9 HRB, and bead width of 14.29 mm. Confirmation tests further validated these findings, demonstrating minimal error and solidifying the effectiveness of the optimization approach. This research paves the way for enhanced weld quality and process control in heavy structural applications.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-14323-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Arc deposition ; Artificial neural networks ; CAE) and Design ; Computer-Aided Engineering (CAD ; Design of experiments ; Engineering ; Hardness ; Industrial and Production Engineering ; Low carbon steels ; Mechanical Engineering ; Media Management ; Multiple objective analysis ; Neural networks ; Optimization ; Original Article ; Process controls ; Process parameters ; Submerged arc welding ; Tensile strength ; Ultimate tensile strength ; Welding current ; Welding parameters</subject><ispartof>International journal of advanced manufacturing technology, 2024-10, Vol.134 (7-8), p.3877-3891</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-666b1943f915d1b7cee2a86a7ffaf52afbf7aeb004c82f5d02c290af3cc28cee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-14323-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-14323-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zelalem, Yilikal Azene</creatorcontrib><creatorcontrib>Tsegaw, Assefa Asmare</creatorcontrib><title>Process parameter optimization of submerged arc welding on mild steel AISI 1020 using an artificial neural network trained with multi-objective Jaya algorithm</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Submerged arc welding (SAW), renowned for its high deposition rate and superior weld quality, is the go-to method for joining thick metals in heavy structures. However, industry beams and columns welded with SAW can exhibit detrimental defects like undercut, porosity, and burn-through, significantly impacting weld properties. This study addresses this challenge by presenting a multi-objective optimization approach for SAW parameters on AISI 1020 mild steel. Aiming to optimize tensile strength, hardness, and bead width, the study employs Taguchi’s design of experiments and couples the multi-objective Jaya algorithm with an artificial neural network (ANN). This synergistic combination yielded optimal process parameters: 417 A welding current, 20.7 mm electrode stick-out, 33.7 V voltage, and 505.8 mm/min transverse speed. These settings translated into exceptional weld characteristics, with ultimate tensile strength reaching 427 MPa, hardness of 73.9 HRB, and bead width of 14.29 mm. Confirmation tests further validated these findings, demonstrating minimal error and solidifying the effectiveness of the optimization approach. This research paves the way for enhanced weld quality and process control in heavy structural applications.</description><subject>Algorithms</subject><subject>Arc deposition</subject><subject>Artificial neural networks</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design of experiments</subject><subject>Engineering</subject><subject>Hardness</subject><subject>Industrial and Production Engineering</subject><subject>Low carbon steels</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Multiple objective analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Process controls</subject><subject>Process parameters</subject><subject>Submerged arc welding</subject><subject>Tensile strength</subject><subject>Ultimate tensile strength</subject><subject>Welding current</subject><subject>Welding parameters</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUGLFDEQhYMoOI7-AU8Bz9FK0pPuOS6LuiMLK6jnUJ2ujBm7O2OSdhh_jL_V7I7gbU9V8L73Cuox9lrCWwnQvssAsgUBqhGy0UqL8xO2qpsWGuTmKVuBMp3Qremesxc5HypupOlW7M_nFB3lzI-YcKJCicdjCVP4jSXEmUfP89JPlPY0cEyOn2gcwrznVZvCOPBciEZ-tfuy4xIU8CXfqzhXuAQfXMCRz7Skh1FOMf3gJWGYa9wplO98WsYSROwP5Er4RfwTnpHjuI-pqtNL9szjmOnVv7lm3z68_3p9I27vPu6ur26FUwBFGGN6uW2038rNIPvWESnsDLbeo98o9L1vkXqAxnXKbwZQTm0BvXZOdRXWa_bmkntM8edCudhDXNJcT1otQZvGyPrNNVMXyqWYcyJvjylMmM5Wgr3vwV56sLUH-9CDPVeTvphyhec9pf_Rj7j-AlGOj1U</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zelalem, Yilikal Azene</creator><creator>Tsegaw, Assefa Asmare</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Process parameter optimization of submerged arc welding on mild steel AISI 1020 using an artificial neural network trained with multi-objective Jaya algorithm</title><author>Zelalem, Yilikal Azene ; Tsegaw, Assefa Asmare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-666b1943f915d1b7cee2a86a7ffaf52afbf7aeb004c82f5d02c290af3cc28cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arc deposition</topic><topic>Artificial neural networks</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design of experiments</topic><topic>Engineering</topic><topic>Hardness</topic><topic>Industrial and Production Engineering</topic><topic>Low carbon steels</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Multiple objective analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Process controls</topic><topic>Process parameters</topic><topic>Submerged arc welding</topic><topic>Tensile strength</topic><topic>Ultimate tensile strength</topic><topic>Welding current</topic><topic>Welding parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zelalem, Yilikal Azene</creatorcontrib><creatorcontrib>Tsegaw, Assefa Asmare</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zelalem, Yilikal Azene</au><au>Tsegaw, Assefa Asmare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process parameter optimization of submerged arc welding on mild steel AISI 1020 using an artificial neural network trained with multi-objective Jaya algorithm</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>134</volume><issue>7-8</issue><spage>3877</spage><epage>3891</epage><pages>3877-3891</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Submerged arc welding (SAW), renowned for its high deposition rate and superior weld quality, is the go-to method for joining thick metals in heavy structures. However, industry beams and columns welded with SAW can exhibit detrimental defects like undercut, porosity, and burn-through, significantly impacting weld properties. This study addresses this challenge by presenting a multi-objective optimization approach for SAW parameters on AISI 1020 mild steel. Aiming to optimize tensile strength, hardness, and bead width, the study employs Taguchi’s design of experiments and couples the multi-objective Jaya algorithm with an artificial neural network (ANN). This synergistic combination yielded optimal process parameters: 417 A welding current, 20.7 mm electrode stick-out, 33.7 V voltage, and 505.8 mm/min transverse speed. These settings translated into exceptional weld characteristics, with ultimate tensile strength reaching 427 MPa, hardness of 73.9 HRB, and bead width of 14.29 mm. Confirmation tests further validated these findings, demonstrating minimal error and solidifying the effectiveness of the optimization approach. This research paves the way for enhanced weld quality and process control in heavy structural applications.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-14323-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2024-10, Vol.134 (7-8), p.3877-3891 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_3103646114 |
source | SpringerNature Journals |
subjects | Algorithms Arc deposition Artificial neural networks CAE) and Design Computer-Aided Engineering (CAD Design of experiments Engineering Hardness Industrial and Production Engineering Low carbon steels Mechanical Engineering Media Management Multiple objective analysis Neural networks Optimization Original Article Process controls Process parameters Submerged arc welding Tensile strength Ultimate tensile strength Welding current Welding parameters |
title | Process parameter optimization of submerged arc welding on mild steel AISI 1020 using an artificial neural network trained with multi-objective Jaya algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20parameter%20optimization%20of%20submerged%20arc%20welding%20on%20mild%20steel%20AISI%201020%20using%20an%20artificial%20neural%20network%20trained%20with%20multi-objective%20Jaya%20algorithm&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zelalem,%20Yilikal%20Azene&rft.date=2024-10-01&rft.volume=134&rft.issue=7-8&rft.spage=3877&rft.epage=3891&rft.pages=3877-3891&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-14323-y&rft_dat=%3Cproquest_cross%3E3103646114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103646114&rft_id=info:pmid/&rfr_iscdi=true |