Efficient finite element modeling of photonic modal analysis augmented by combined symmetry

In this work, we present an efficient numerical implementation of the finite element method for modal analysis that leverages various symmetry operations, including spatial symmetry in point groups and space-time symmetry in pseudo-Hermiticity systems. We provide a formal and rigorous treatment, spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Wang, Jingwei, Liu, Lida, Yuhao Jing, Xiong, Zhongfei, Chen, Yuntian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Jingwei
Liu, Lida
Yuhao Jing
Xiong, Zhongfei
Chen, Yuntian
description In this work, we present an efficient numerical implementation of the finite element method for modal analysis that leverages various symmetry operations, including spatial symmetry in point groups and space-time symmetry in pseudo-Hermiticity systems. We provide a formal and rigorous treatment, specifically deriving the boundary constraint conditions corresponding to symmetry constraints. Without loss of generality, we illustrate our approach via computing the modes of optical waveguides with complex cross-sections, accompanied with performance benchmark against the standard finite element method. The obtained results demonstrate excellent agreement between our method and standard FEM with significantly improved computational efficiency. Specifically, the calculation speed increased by a factor of \(23\) in the hollow-core fiber. Furthermore, our method directly classifies and computes the modes based on symmetry, facilitating the modal analysis of complex waveguides.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3103644487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103644487</sourcerecordid><originalsourceid>FETCH-proquest_journals_31036444873</originalsourceid><addsrcrecordid>eNqNjEsKgzAYhEOhUGm9Q6BrISbxsS-WHqC7LiTqHxvJw5q4yO2r0AN0NTMfH3NACWUsz2pO6Qml3k-EEFpWtChYgl6NlKpXYAOWyqoAGDSYfRo3gFZ2xE7i-e2Cs6rfodBYWKGjVx6LddxdGHAXce9Mp-zWfTQGwhIv6CiF9pD-8oyu9-Z5e2Tz4j4r-NBObl22L9-ynLCSc15X7D_rC961Q98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103644487</pqid></control><display><type>article</type><title>Efficient finite element modeling of photonic modal analysis augmented by combined symmetry</title><source>Freely Accessible Journals</source><creator>Wang, Jingwei ; Liu, Lida ; Yuhao Jing ; Xiong, Zhongfei ; Chen, Yuntian</creator><creatorcontrib>Wang, Jingwei ; Liu, Lida ; Yuhao Jing ; Xiong, Zhongfei ; Chen, Yuntian</creatorcontrib><description>In this work, we present an efficient numerical implementation of the finite element method for modal analysis that leverages various symmetry operations, including spatial symmetry in point groups and space-time symmetry in pseudo-Hermiticity systems. We provide a formal and rigorous treatment, specifically deriving the boundary constraint conditions corresponding to symmetry constraints. Without loss of generality, we illustrate our approach via computing the modes of optical waveguides with complex cross-sections, accompanied with performance benchmark against the standard finite element method. The obtained results demonstrate excellent agreement between our method and standard FEM with significantly improved computational efficiency. Specifically, the calculation speed increased by a factor of \(23\) in the hollow-core fiber. Furthermore, our method directly classifies and computes the modes based on symmetry, facilitating the modal analysis of complex waveguides.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computing time ; Constraints ; Finite element method ; Modal analysis ; Optical waveguides ; Symmetry</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Jingwei</creatorcontrib><creatorcontrib>Liu, Lida</creatorcontrib><creatorcontrib>Yuhao Jing</creatorcontrib><creatorcontrib>Xiong, Zhongfei</creatorcontrib><creatorcontrib>Chen, Yuntian</creatorcontrib><title>Efficient finite element modeling of photonic modal analysis augmented by combined symmetry</title><title>arXiv.org</title><description>In this work, we present an efficient numerical implementation of the finite element method for modal analysis that leverages various symmetry operations, including spatial symmetry in point groups and space-time symmetry in pseudo-Hermiticity systems. We provide a formal and rigorous treatment, specifically deriving the boundary constraint conditions corresponding to symmetry constraints. Without loss of generality, we illustrate our approach via computing the modes of optical waveguides with complex cross-sections, accompanied with performance benchmark against the standard finite element method. The obtained results demonstrate excellent agreement between our method and standard FEM with significantly improved computational efficiency. Specifically, the calculation speed increased by a factor of \(23\) in the hollow-core fiber. Furthermore, our method directly classifies and computes the modes based on symmetry, facilitating the modal analysis of complex waveguides.</description><subject>Computing time</subject><subject>Constraints</subject><subject>Finite element method</subject><subject>Modal analysis</subject><subject>Optical waveguides</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKgzAYhEOhUGm9Q6BrISbxsS-WHqC7LiTqHxvJw5q4yO2r0AN0NTMfH3NACWUsz2pO6Qml3k-EEFpWtChYgl6NlKpXYAOWyqoAGDSYfRo3gFZ2xE7i-e2Cs6rfodBYWKGjVx6LddxdGHAXce9Mp-zWfTQGwhIv6CiF9pD-8oyu9-Z5e2Tz4j4r-NBObl22L9-ynLCSc15X7D_rC961Q98</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Wang, Jingwei</creator><creator>Liu, Lida</creator><creator>Yuhao Jing</creator><creator>Xiong, Zhongfei</creator><creator>Chen, Yuntian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240911</creationdate><title>Efficient finite element modeling of photonic modal analysis augmented by combined symmetry</title><author>Wang, Jingwei ; Liu, Lida ; Yuhao Jing ; Xiong, Zhongfei ; Chen, Yuntian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31036444873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computing time</topic><topic>Constraints</topic><topic>Finite element method</topic><topic>Modal analysis</topic><topic>Optical waveguides</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingwei</creatorcontrib><creatorcontrib>Liu, Lida</creatorcontrib><creatorcontrib>Yuhao Jing</creatorcontrib><creatorcontrib>Xiong, Zhongfei</creatorcontrib><creatorcontrib>Chen, Yuntian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingwei</au><au>Liu, Lida</au><au>Yuhao Jing</au><au>Xiong, Zhongfei</au><au>Chen, Yuntian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient finite element modeling of photonic modal analysis augmented by combined symmetry</atitle><jtitle>arXiv.org</jtitle><date>2024-09-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work, we present an efficient numerical implementation of the finite element method for modal analysis that leverages various symmetry operations, including spatial symmetry in point groups and space-time symmetry in pseudo-Hermiticity systems. We provide a formal and rigorous treatment, specifically deriving the boundary constraint conditions corresponding to symmetry constraints. Without loss of generality, we illustrate our approach via computing the modes of optical waveguides with complex cross-sections, accompanied with performance benchmark against the standard finite element method. The obtained results demonstrate excellent agreement between our method and standard FEM with significantly improved computational efficiency. Specifically, the calculation speed increased by a factor of \(23\) in the hollow-core fiber. Furthermore, our method directly classifies and computes the modes based on symmetry, facilitating the modal analysis of complex waveguides.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3103644487
source Freely Accessible Journals
subjects Computing time
Constraints
Finite element method
Modal analysis
Optical waveguides
Symmetry
title Efficient finite element modeling of photonic modal analysis augmented by combined symmetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20finite%20element%20modeling%20of%20photonic%20modal%20analysis%20augmented%20by%20combined%20symmetry&rft.jtitle=arXiv.org&rft.au=Wang,%20Jingwei&rft.date=2024-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3103644487%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103644487&rft_id=info:pmid/&rfr_iscdi=true