Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics

ABSTRACT Time-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratized, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery – with citizen science...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2024-09, Vol.533 (2), p.2113-2132
Hauptverfasser: Killestein, T L, Kelsey, L, Wickens, E, Nuttall, L, Lyman, J, Krawczyk, C, Ackley, K, Dyer, M J, Jiménez-Ibarra, F, Ulaczyk, K, O’Neill, D, Kumar, A, Steeghs, D, Galloway, D K, Dhillon, V S, O’Brien, P, Ramsay, G, Noysena, K, Kotak, R, Breton, R P, Pallé, E, Pollacco, D, Awiphan, S, Belkin, S, Chote, P, Clark, P, Coppejans, D, Duffy, C, Eyles-Ferris, R, Godson, B, Gompertz, B, Graur, O, Irawati, P, Jarvis, D, Julakanti, Y, Kennedy, M R, Kuncarayakti, H, Levan, A, Littlefair, S, Magee, M, Mandhai, S, Mata Sánchez, D, Mattila, S, McCormac, J, Mullaney, J, Munday, J, Patel, M, Pursiainen, M, Rana, J, Sawangwit, U, Stanway, E, Starling, R, Warwick, B, Wiersema, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2132
container_issue 2
container_start_page 2113
container_title Monthly notices of the Royal Astronomical Society
container_volume 533
creator Killestein, T L
Kelsey, L
Wickens, E
Nuttall, L
Lyman, J
Krawczyk, C
Ackley, K
Dyer, M J
Jiménez-Ibarra, F
Ulaczyk, K
O’Neill, D
Kumar, A
Steeghs, D
Galloway, D K
Dhillon, V S
O’Brien, P
Ramsay, G
Noysena, K
Kotak, R
Breton, R P
Pallé, E
Pollacco, D
Awiphan, S
Belkin, S
Chote, P
Clark, P
Coppejans, D
Duffy, C
Eyles-Ferris, R
Godson, B
Gompertz, B
Graur, O
Irawati, P
Jarvis, D
Julakanti, Y
Kennedy, M R
Kuncarayakti, H
Levan, A
Littlefair, S
Magee, M
Mandhai, S
Mata Sánchez, D
Mattila, S
McCormac, J
Mullaney, J
Munday, J
Patel, M
Pursiainen, M
Rana, J
Sawangwit, U
Stanway, E
Starling, R
Warwick, B
Wiersema, K
description ABSTRACT Time-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratized, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery – with citizen science approaches proving effective at meeting these requirements. In this paper, we describe the creation of and the initial results from the Kilonova Seekers citizen science project, built to find transient phenomena from the GOTO telescopes in near real-time. Kilonova Seekers launched in 2023 July and received over 600 000 classifications from approximately 2000 volunteers over the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the project has yielded 20 discoveries, generated a ‘gold-standard’ training set of 17 682 detections for augmenting deep-learned classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation classification algorithms currently in development.
doi_str_mv 10.1093/mnras/stae1817
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103064846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stae1817</oup_id><sourcerecordid>3103064846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-bbf6ac2026cf9c52f009d946a7b81112a16dd8c12fca627c3406b7ff9874e6693</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiYkjrj_SSsKGKFkSlDpQNKXKcs-rSxMF2kcqvJ6UwM93p9Lx3p4eQa85GnBVy3LRehXGICnnOsxMy4BImiSgATsmAMTlJ8ozzc3IRwoYxlkoBA_L2bLeudZ-KviC-ow93NK6RzperJe2826CO1DhPPaptEm2DVNtov7ClQVtsNVLb0sM8qV2j-l6F6F233gerwyU5M2ob8Oq3Dsnr7GE1fUwWy_nT9H6RaCEgJlVlQGnBBGhT6IkwjBV1kYLKqpxzLhSHus41F0YrEJmWKYMqM6bIsxQBCjkkN8e9_ccfOwyx3Lidb_uTpeRMMkjzFHpqdKS0dyF4NGXnbaP8vuSsPBgsfwyWfwb7wO0x4Hbdf-w3gCF0xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103064846</pqid></control><display><type>article</type><title>Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics</title><source>Open Access: Oxford University Press Open Journals</source><source>DOAJ Directory of Open Access Journals</source><creator>Killestein, T L ; Kelsey, L ; Wickens, E ; Nuttall, L ; Lyman, J ; Krawczyk, C ; Ackley, K ; Dyer, M J ; Jiménez-Ibarra, F ; Ulaczyk, K ; O’Neill, D ; Kumar, A ; Steeghs, D ; Galloway, D K ; Dhillon, V S ; O’Brien, P ; Ramsay, G ; Noysena, K ; Kotak, R ; Breton, R P ; Pallé, E ; Pollacco, D ; Awiphan, S ; Belkin, S ; Chote, P ; Clark, P ; Coppejans, D ; Duffy, C ; Eyles-Ferris, R ; Godson, B ; Gompertz, B ; Graur, O ; Irawati, P ; Jarvis, D ; Julakanti, Y ; Kennedy, M R ; Kuncarayakti, H ; Levan, A ; Littlefair, S ; Magee, M ; Mandhai, S ; Mata Sánchez, D ; Mattila, S ; McCormac, J ; Mullaney, J ; Munday, J ; Patel, M ; Pursiainen, M ; Rana, J ; Sawangwit, U ; Stanway, E ; Starling, R ; Warwick, B ; Wiersema, K</creator><creatorcontrib>Killestein, T L ; Kelsey, L ; Wickens, E ; Nuttall, L ; Lyman, J ; Krawczyk, C ; Ackley, K ; Dyer, M J ; Jiménez-Ibarra, F ; Ulaczyk, K ; O’Neill, D ; Kumar, A ; Steeghs, D ; Galloway, D K ; Dhillon, V S ; O’Brien, P ; Ramsay, G ; Noysena, K ; Kotak, R ; Breton, R P ; Pallé, E ; Pollacco, D ; Awiphan, S ; Belkin, S ; Chote, P ; Clark, P ; Coppejans, D ; Duffy, C ; Eyles-Ferris, R ; Godson, B ; Gompertz, B ; Graur, O ; Irawati, P ; Jarvis, D ; Julakanti, Y ; Kennedy, M R ; Kuncarayakti, H ; Levan, A ; Littlefair, S ; Magee, M ; Mandhai, S ; Mata Sánchez, D ; Mattila, S ; McCormac, J ; Mullaney, J ; Munday, J ; Patel, M ; Pursiainen, M ; Rana, J ; Sawangwit, U ; Stanway, E ; Starling, R ; Warwick, B ; Wiersema, K</creatorcontrib><description>ABSTRACT Time-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratized, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery – with citizen science approaches proving effective at meeting these requirements. In this paper, we describe the creation of and the initial results from the Kilonova Seekers citizen science project, built to find transient phenomena from the GOTO telescopes in near real-time. Kilonova Seekers launched in 2023 July and received over 600 000 classifications from approximately 2000 volunteers over the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the project has yielded 20 discoveries, generated a ‘gold-standard’ training set of 17 682 detections for augmenting deep-learned classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation classification algorithms currently in development.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stae1817</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Algorithms ; Astrophysics ; Classification ; Kilonovae ; Machine learning ; Real time ; Telescopes ; Time domain analysis</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2024-09, Vol.533 (2), p.2113-2132</ispartof><rights>2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024</rights><rights>2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-bbf6ac2026cf9c52f009d946a7b81112a16dd8c12fca627c3406b7ff9874e6693</cites><orcidid>0000-0003-3251-3583 ; 0000-0002-0629-8931 ; 0000-0001-6894-6044 ; 0000-0002-0440-9597 ; 0000-0001-9772-1071 ; 0000-0001-9233-2341 ; 0000-0002-4391-6137 ; 0000-0002-3464-0642 ; 0000-0001-5803-2038 ; 0000-0003-0313-0487 ; 0000-0002-5826-0548 ; 0000-0003-3665-5482 ; 0000-0001-8522-4983 ; 0000-0001-8722-9710 ; 0000-0002-9798-029X ; 0000-0003-0771-4746 ; 0000-0002-8775-2365 ; 0000-0002-8770-809X ; 0000-0001-6662-0200 ; 0000-0003-4236-9642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1598,27901,27902</link.rule.ids></links><search><creatorcontrib>Killestein, T L</creatorcontrib><creatorcontrib>Kelsey, L</creatorcontrib><creatorcontrib>Wickens, E</creatorcontrib><creatorcontrib>Nuttall, L</creatorcontrib><creatorcontrib>Lyman, J</creatorcontrib><creatorcontrib>Krawczyk, C</creatorcontrib><creatorcontrib>Ackley, K</creatorcontrib><creatorcontrib>Dyer, M J</creatorcontrib><creatorcontrib>Jiménez-Ibarra, F</creatorcontrib><creatorcontrib>Ulaczyk, K</creatorcontrib><creatorcontrib>O’Neill, D</creatorcontrib><creatorcontrib>Kumar, A</creatorcontrib><creatorcontrib>Steeghs, D</creatorcontrib><creatorcontrib>Galloway, D K</creatorcontrib><creatorcontrib>Dhillon, V S</creatorcontrib><creatorcontrib>O’Brien, P</creatorcontrib><creatorcontrib>Ramsay, G</creatorcontrib><creatorcontrib>Noysena, K</creatorcontrib><creatorcontrib>Kotak, R</creatorcontrib><creatorcontrib>Breton, R P</creatorcontrib><creatorcontrib>Pallé, E</creatorcontrib><creatorcontrib>Pollacco, D</creatorcontrib><creatorcontrib>Awiphan, S</creatorcontrib><creatorcontrib>Belkin, S</creatorcontrib><creatorcontrib>Chote, P</creatorcontrib><creatorcontrib>Clark, P</creatorcontrib><creatorcontrib>Coppejans, D</creatorcontrib><creatorcontrib>Duffy, C</creatorcontrib><creatorcontrib>Eyles-Ferris, R</creatorcontrib><creatorcontrib>Godson, B</creatorcontrib><creatorcontrib>Gompertz, B</creatorcontrib><creatorcontrib>Graur, O</creatorcontrib><creatorcontrib>Irawati, P</creatorcontrib><creatorcontrib>Jarvis, D</creatorcontrib><creatorcontrib>Julakanti, Y</creatorcontrib><creatorcontrib>Kennedy, M R</creatorcontrib><creatorcontrib>Kuncarayakti, H</creatorcontrib><creatorcontrib>Levan, A</creatorcontrib><creatorcontrib>Littlefair, S</creatorcontrib><creatorcontrib>Magee, M</creatorcontrib><creatorcontrib>Mandhai, S</creatorcontrib><creatorcontrib>Mata Sánchez, D</creatorcontrib><creatorcontrib>Mattila, S</creatorcontrib><creatorcontrib>McCormac, J</creatorcontrib><creatorcontrib>Mullaney, J</creatorcontrib><creatorcontrib>Munday, J</creatorcontrib><creatorcontrib>Patel, M</creatorcontrib><creatorcontrib>Pursiainen, M</creatorcontrib><creatorcontrib>Rana, J</creatorcontrib><creatorcontrib>Sawangwit, U</creatorcontrib><creatorcontrib>Stanway, E</creatorcontrib><creatorcontrib>Starling, R</creatorcontrib><creatorcontrib>Warwick, B</creatorcontrib><creatorcontrib>Wiersema, K</creatorcontrib><title>Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Time-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratized, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery – with citizen science approaches proving effective at meeting these requirements. In this paper, we describe the creation of and the initial results from the Kilonova Seekers citizen science project, built to find transient phenomena from the GOTO telescopes in near real-time. Kilonova Seekers launched in 2023 July and received over 600 000 classifications from approximately 2000 volunteers over the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the project has yielded 20 discoveries, generated a ‘gold-standard’ training set of 17 682 detections for augmenting deep-learned classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation classification algorithms currently in development.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Classification</subject><subject>Kilonovae</subject><subject>Machine learning</subject><subject>Real time</subject><subject>Telescopes</subject><subject>Time domain analysis</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkD1PwzAQhi0EEqWwMltiYkjrj_SSsKGKFkSlDpQNKXKcs-rSxMF2kcqvJ6UwM93p9Lx3p4eQa85GnBVy3LRehXGICnnOsxMy4BImiSgATsmAMTlJ8ozzc3IRwoYxlkoBA_L2bLeudZ-KviC-ow93NK6RzperJe2826CO1DhPPaptEm2DVNtov7ClQVtsNVLb0sM8qV2j-l6F6F233gerwyU5M2ob8Oq3Dsnr7GE1fUwWy_nT9H6RaCEgJlVlQGnBBGhT6IkwjBV1kYLKqpxzLhSHus41F0YrEJmWKYMqM6bIsxQBCjkkN8e9_ccfOwyx3Lidb_uTpeRMMkjzFHpqdKS0dyF4NGXnbaP8vuSsPBgsfwyWfwb7wO0x4Hbdf-w3gCF0xQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Killestein, T L</creator><creator>Kelsey, L</creator><creator>Wickens, E</creator><creator>Nuttall, L</creator><creator>Lyman, J</creator><creator>Krawczyk, C</creator><creator>Ackley, K</creator><creator>Dyer, M J</creator><creator>Jiménez-Ibarra, F</creator><creator>Ulaczyk, K</creator><creator>O’Neill, D</creator><creator>Kumar, A</creator><creator>Steeghs, D</creator><creator>Galloway, D K</creator><creator>Dhillon, V S</creator><creator>O’Brien, P</creator><creator>Ramsay, G</creator><creator>Noysena, K</creator><creator>Kotak, R</creator><creator>Breton, R P</creator><creator>Pallé, E</creator><creator>Pollacco, D</creator><creator>Awiphan, S</creator><creator>Belkin, S</creator><creator>Chote, P</creator><creator>Clark, P</creator><creator>Coppejans, D</creator><creator>Duffy, C</creator><creator>Eyles-Ferris, R</creator><creator>Godson, B</creator><creator>Gompertz, B</creator><creator>Graur, O</creator><creator>Irawati, P</creator><creator>Jarvis, D</creator><creator>Julakanti, Y</creator><creator>Kennedy, M R</creator><creator>Kuncarayakti, H</creator><creator>Levan, A</creator><creator>Littlefair, S</creator><creator>Magee, M</creator><creator>Mandhai, S</creator><creator>Mata Sánchez, D</creator><creator>Mattila, S</creator><creator>McCormac, J</creator><creator>Mullaney, J</creator><creator>Munday, J</creator><creator>Patel, M</creator><creator>Pursiainen, M</creator><creator>Rana, J</creator><creator>Sawangwit, U</creator><creator>Stanway, E</creator><creator>Starling, R</creator><creator>Warwick, B</creator><creator>Wiersema, K</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3251-3583</orcidid><orcidid>https://orcid.org/0000-0002-0629-8931</orcidid><orcidid>https://orcid.org/0000-0001-6894-6044</orcidid><orcidid>https://orcid.org/0000-0002-0440-9597</orcidid><orcidid>https://orcid.org/0000-0001-9772-1071</orcidid><orcidid>https://orcid.org/0000-0001-9233-2341</orcidid><orcidid>https://orcid.org/0000-0002-4391-6137</orcidid><orcidid>https://orcid.org/0000-0002-3464-0642</orcidid><orcidid>https://orcid.org/0000-0001-5803-2038</orcidid><orcidid>https://orcid.org/0000-0003-0313-0487</orcidid><orcidid>https://orcid.org/0000-0002-5826-0548</orcidid><orcidid>https://orcid.org/0000-0003-3665-5482</orcidid><orcidid>https://orcid.org/0000-0001-8522-4983</orcidid><orcidid>https://orcid.org/0000-0001-8722-9710</orcidid><orcidid>https://orcid.org/0000-0002-9798-029X</orcidid><orcidid>https://orcid.org/0000-0003-0771-4746</orcidid><orcidid>https://orcid.org/0000-0002-8775-2365</orcidid><orcidid>https://orcid.org/0000-0002-8770-809X</orcidid><orcidid>https://orcid.org/0000-0001-6662-0200</orcidid><orcidid>https://orcid.org/0000-0003-4236-9642</orcidid></search><sort><creationdate>20240901</creationdate><title>Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics</title><author>Killestein, T L ; Kelsey, L ; Wickens, E ; Nuttall, L ; Lyman, J ; Krawczyk, C ; Ackley, K ; Dyer, M J ; Jiménez-Ibarra, F ; Ulaczyk, K ; O’Neill, D ; Kumar, A ; Steeghs, D ; Galloway, D K ; Dhillon, V S ; O’Brien, P ; Ramsay, G ; Noysena, K ; Kotak, R ; Breton, R P ; Pallé, E ; Pollacco, D ; Awiphan, S ; Belkin, S ; Chote, P ; Clark, P ; Coppejans, D ; Duffy, C ; Eyles-Ferris, R ; Godson, B ; Gompertz, B ; Graur, O ; Irawati, P ; Jarvis, D ; Julakanti, Y ; Kennedy, M R ; Kuncarayakti, H ; Levan, A ; Littlefair, S ; Magee, M ; Mandhai, S ; Mata Sánchez, D ; Mattila, S ; McCormac, J ; Mullaney, J ; Munday, J ; Patel, M ; Pursiainen, M ; Rana, J ; Sawangwit, U ; Stanway, E ; Starling, R ; Warwick, B ; Wiersema, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-bbf6ac2026cf9c52f009d946a7b81112a16dd8c12fca627c3406b7ff9874e6693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Classification</topic><topic>Kilonovae</topic><topic>Machine learning</topic><topic>Real time</topic><topic>Telescopes</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Killestein, T L</creatorcontrib><creatorcontrib>Kelsey, L</creatorcontrib><creatorcontrib>Wickens, E</creatorcontrib><creatorcontrib>Nuttall, L</creatorcontrib><creatorcontrib>Lyman, J</creatorcontrib><creatorcontrib>Krawczyk, C</creatorcontrib><creatorcontrib>Ackley, K</creatorcontrib><creatorcontrib>Dyer, M J</creatorcontrib><creatorcontrib>Jiménez-Ibarra, F</creatorcontrib><creatorcontrib>Ulaczyk, K</creatorcontrib><creatorcontrib>O’Neill, D</creatorcontrib><creatorcontrib>Kumar, A</creatorcontrib><creatorcontrib>Steeghs, D</creatorcontrib><creatorcontrib>Galloway, D K</creatorcontrib><creatorcontrib>Dhillon, V S</creatorcontrib><creatorcontrib>O’Brien, P</creatorcontrib><creatorcontrib>Ramsay, G</creatorcontrib><creatorcontrib>Noysena, K</creatorcontrib><creatorcontrib>Kotak, R</creatorcontrib><creatorcontrib>Breton, R P</creatorcontrib><creatorcontrib>Pallé, E</creatorcontrib><creatorcontrib>Pollacco, D</creatorcontrib><creatorcontrib>Awiphan, S</creatorcontrib><creatorcontrib>Belkin, S</creatorcontrib><creatorcontrib>Chote, P</creatorcontrib><creatorcontrib>Clark, P</creatorcontrib><creatorcontrib>Coppejans, D</creatorcontrib><creatorcontrib>Duffy, C</creatorcontrib><creatorcontrib>Eyles-Ferris, R</creatorcontrib><creatorcontrib>Godson, B</creatorcontrib><creatorcontrib>Gompertz, B</creatorcontrib><creatorcontrib>Graur, O</creatorcontrib><creatorcontrib>Irawati, P</creatorcontrib><creatorcontrib>Jarvis, D</creatorcontrib><creatorcontrib>Julakanti, Y</creatorcontrib><creatorcontrib>Kennedy, M R</creatorcontrib><creatorcontrib>Kuncarayakti, H</creatorcontrib><creatorcontrib>Levan, A</creatorcontrib><creatorcontrib>Littlefair, S</creatorcontrib><creatorcontrib>Magee, M</creatorcontrib><creatorcontrib>Mandhai, S</creatorcontrib><creatorcontrib>Mata Sánchez, D</creatorcontrib><creatorcontrib>Mattila, S</creatorcontrib><creatorcontrib>McCormac, J</creatorcontrib><creatorcontrib>Mullaney, J</creatorcontrib><creatorcontrib>Munday, J</creatorcontrib><creatorcontrib>Patel, M</creatorcontrib><creatorcontrib>Pursiainen, M</creatorcontrib><creatorcontrib>Rana, J</creatorcontrib><creatorcontrib>Sawangwit, U</creatorcontrib><creatorcontrib>Stanway, E</creatorcontrib><creatorcontrib>Starling, R</creatorcontrib><creatorcontrib>Warwick, B</creatorcontrib><creatorcontrib>Wiersema, K</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Killestein, T L</au><au>Kelsey, L</au><au>Wickens, E</au><au>Nuttall, L</au><au>Lyman, J</au><au>Krawczyk, C</au><au>Ackley, K</au><au>Dyer, M J</au><au>Jiménez-Ibarra, F</au><au>Ulaczyk, K</au><au>O’Neill, D</au><au>Kumar, A</au><au>Steeghs, D</au><au>Galloway, D K</au><au>Dhillon, V S</au><au>O’Brien, P</au><au>Ramsay, G</au><au>Noysena, K</au><au>Kotak, R</au><au>Breton, R P</au><au>Pallé, E</au><au>Pollacco, D</au><au>Awiphan, S</au><au>Belkin, S</au><au>Chote, P</au><au>Clark, P</au><au>Coppejans, D</au><au>Duffy, C</au><au>Eyles-Ferris, R</au><au>Godson, B</au><au>Gompertz, B</au><au>Graur, O</au><au>Irawati, P</au><au>Jarvis, D</au><au>Julakanti, Y</au><au>Kennedy, M R</au><au>Kuncarayakti, H</au><au>Levan, A</au><au>Littlefair, S</au><au>Magee, M</au><au>Mandhai, S</au><au>Mata Sánchez, D</au><au>Mattila, S</au><au>McCormac, J</au><au>Mullaney, J</au><au>Munday, J</au><au>Patel, M</au><au>Pursiainen, M</au><au>Rana, J</au><au>Sawangwit, U</au><au>Stanway, E</au><au>Starling, R</au><au>Warwick, B</au><au>Wiersema, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>533</volume><issue>2</issue><spage>2113</spage><epage>2132</epage><pages>2113-2132</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Time-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratized, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery – with citizen science approaches proving effective at meeting these requirements. In this paper, we describe the creation of and the initial results from the Kilonova Seekers citizen science project, built to find transient phenomena from the GOTO telescopes in near real-time. Kilonova Seekers launched in 2023 July and received over 600 000 classifications from approximately 2000 volunteers over the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the project has yielded 20 discoveries, generated a ‘gold-standard’ training set of 17 682 detections for augmenting deep-learned classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation classification algorithms currently in development.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stae1817</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3251-3583</orcidid><orcidid>https://orcid.org/0000-0002-0629-8931</orcidid><orcidid>https://orcid.org/0000-0001-6894-6044</orcidid><orcidid>https://orcid.org/0000-0002-0440-9597</orcidid><orcidid>https://orcid.org/0000-0001-9772-1071</orcidid><orcidid>https://orcid.org/0000-0001-9233-2341</orcidid><orcidid>https://orcid.org/0000-0002-4391-6137</orcidid><orcidid>https://orcid.org/0000-0002-3464-0642</orcidid><orcidid>https://orcid.org/0000-0001-5803-2038</orcidid><orcidid>https://orcid.org/0000-0003-0313-0487</orcidid><orcidid>https://orcid.org/0000-0002-5826-0548</orcidid><orcidid>https://orcid.org/0000-0003-3665-5482</orcidid><orcidid>https://orcid.org/0000-0001-8522-4983</orcidid><orcidid>https://orcid.org/0000-0001-8722-9710</orcidid><orcidid>https://orcid.org/0000-0002-9798-029X</orcidid><orcidid>https://orcid.org/0000-0003-0771-4746</orcidid><orcidid>https://orcid.org/0000-0002-8775-2365</orcidid><orcidid>https://orcid.org/0000-0002-8770-809X</orcidid><orcidid>https://orcid.org/0000-0001-6662-0200</orcidid><orcidid>https://orcid.org/0000-0003-4236-9642</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2024-09, Vol.533 (2), p.2113-2132
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_3103064846
source Open Access: Oxford University Press Open Journals; DOAJ Directory of Open Access Journals
subjects Algorithms
Astrophysics
Classification
Kilonovae
Machine learning
Real time
Telescopes
Time domain analysis
title Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kilonova%20Seekers:%20the%20GOTO%20project%20for%20real-time%20citizen%20science%20in%20time-domain%20astrophysics&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Killestein,%20T%20L&rft.date=2024-09-01&rft.volume=533&rft.issue=2&rft.spage=2113&rft.epage=2132&rft.pages=2113-2132&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stae1817&rft_dat=%3Cproquest_cross%3E3103064846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103064846&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stae1817&rfr_iscdi=true