SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images

Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Xiong, Jiuli, Lanzhuju Mei, Liu, Jiameng, Shen, Dinggang, Xue, Zhong, Cao, Xiaohuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xiong, Jiuli
Lanzhuju Mei
Liu, Jiameng
Shen, Dinggang
Xue, Zhong
Cao, Xiaohuan
description Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3103018876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103018876</sourcerecordid><originalsourceid>FETCH-proquest_journals_31030188763</originalsourceid><addsrcrecordid>eNqNzM8LgjAcBfARBEn5P3yhszC3_EG30MSgvOQ5WTlLU2fbJPzv26FDx-DBg8eHN0MWodR1wg0hC2Qr1WCMiR8Qz6MWupzjxMm43sIO0ukq6xJirvlN16IHs7-FfEIlJJx4WTOl6561cJy64QGZKPkPNolEr6VBEOVw6NidqxWaV6xV3P72Eq2TfR6lziDFa-RKF40YpflUBXUxxW4YBj79T30ARZRCXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103018876</pqid></control><display><type>article</type><title>SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images</title><source>Free E- Journals</source><creator>Xiong, Jiuli ; Lanzhuju Mei ; Liu, Jiameng ; Shen, Dinggang ; Xue, Zhong ; Cao, Xiaohuan</creator><creatorcontrib>Xiong, Jiuli ; Lanzhuju Mei ; Liu, Jiameng ; Shen, Dinggang ; Xue, Zhong ; Cao, Xiaohuan</creatorcontrib><description>Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Computed tomography ; Feature maps ; Image contrast ; Image enhancement ; Learning ; Medical imaging ; Shape recognition</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Xiong, Jiuli</creatorcontrib><creatorcontrib>Lanzhuju Mei</creatorcontrib><creatorcontrib>Liu, Jiameng</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Xue, Zhong</creatorcontrib><creatorcontrib>Cao, Xiaohuan</creatorcontrib><title>SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images</title><title>arXiv.org</title><description>Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem.</description><subject>Annotations</subject><subject>Computed tomography</subject><subject>Feature maps</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Learning</subject><subject>Medical imaging</subject><subject>Shape recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzM8LgjAcBfARBEn5P3yhszC3_EG30MSgvOQ5WTlLU2fbJPzv26FDx-DBg8eHN0MWodR1wg0hC2Qr1WCMiR8Qz6MWupzjxMm43sIO0ukq6xJirvlN16IHs7-FfEIlJJx4WTOl6561cJy64QGZKPkPNolEr6VBEOVw6NidqxWaV6xV3P72Eq2TfR6lziDFa-RKF40YpflUBXUxxW4YBj79T30ARZRCXQ</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Xiong, Jiuli</creator><creator>Lanzhuju Mei</creator><creator>Liu, Jiameng</creator><creator>Shen, Dinggang</creator><creator>Xue, Zhong</creator><creator>Cao, Xiaohuan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240910</creationdate><title>SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images</title><author>Xiong, Jiuli ; Lanzhuju Mei ; Liu, Jiameng ; Shen, Dinggang ; Xue, Zhong ; Cao, Xiaohuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31030188763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Computed tomography</topic><topic>Feature maps</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Learning</topic><topic>Medical imaging</topic><topic>Shape recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jiuli</creatorcontrib><creatorcontrib>Lanzhuju Mei</creatorcontrib><creatorcontrib>Liu, Jiameng</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Xue, Zhong</creatorcontrib><creatorcontrib>Cao, Xiaohuan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Jiuli</au><au>Lanzhuju Mei</au><au>Liu, Jiameng</au><au>Shen, Dinggang</au><au>Xue, Zhong</au><au>Cao, Xiaohuan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images</atitle><jtitle>arXiv.org</jtitle><date>2024-09-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3103018876
source Free E- Journals
subjects Annotations
Computed tomography
Feature maps
Image contrast
Image enhancement
Learning
Medical imaging
Shape recognition
title SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SDF-Net:%20A%20Hybrid%20Detection%20Network%20for%20Mediastinal%20Lymph%20Node%20Detection%20on%20Contrast%20CT%20Images&rft.jtitle=arXiv.org&rft.au=Xiong,%20Jiuli&rft.date=2024-09-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3103018876%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103018876&rft_id=info:pmid/&rfr_iscdi=true