On the Benefits of Visual Stabilization for Frame- and Event-Based Perception
Vision-based perception systems are typically exposed to large orientation changes in different robot applications. In such conditions, their performance might be compromised due to the inherent complexity of processing data captured under challenging motion. Integration of mechanical stabilizers to...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-10, Vol.9 (10), p.8802-8809 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8809 |
---|---|
container_issue | 10 |
container_start_page | 8802 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Rodriguez-Gomez, J.P. Dios, J.R. Martinez-de Ollero, A. Gallego, G. |
description | Vision-based perception systems are typically exposed to large orientation changes in different robot applications. In such conditions, their performance might be compromised due to the inherent complexity of processing data captured under challenging motion. Integration of mechanical stabilizers to compensate for the camera rotation is not always possible due to the robot payload constraints. This letter presents a processing-based stabilization approach to compensate the camera's rotational motion both on events and on frames (i.e., images). Assuming that the camera's attitude is available, we evaluate the benefits of stabilization in two perception applications: feature tracking and estimating the translation component of the camera's ego-motion. The validation is performed using synthetic data and sequences from well-known event-based vision datasets. The experiments unveil that stabilization can improve feature tracking and camera ego-motion estimation accuracy in 27.37% and 34.82%, respectively. Concurrently, stabilization can reduce the processing time of computing the camera's linear velocity by at least 25%. |
doi_str_mv | 10.1109/LRA.2024.3450290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3102974698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10648753</ieee_id><sourcerecordid>3102974698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-fd7188c8c9df480b06f1c93f79cb44f64114c09177e143fe387eb11bb1253ab73</originalsourceid><addsrcrecordid>eNpNkDtrwzAUhUVpoSHN3qGDoLNTXUu2pDEJ6QNSUvpahSRfUYfETiWn0P76OiRDpnuG75wLHyHXwMYATN8tXifjnOVizEXBcs3OyCDnUmZcluX5Sb4ko5RWjDEocsl1MSDPy4Z2X0in2GCou0TbQD_rtLNr-tZZV6_rP9vVbUNDG-l9tBvMqG0qOv_BpsumNmFFXzB63O6pK3IR7Drh6HiH5ON-_j57zBbLh6fZZJF5kEWXhUqCUl55XQWhmGNlAK95kNo7IUIpAIRnGqREEDwgVxIdgHOQF9w6yYfk9rC7je33DlNnVu0uNv1Lw6EXIEWpVU-xA-Vjm1LEYLax3tj4a4CZvTfTezN7b-bora_cHCo1Ip7gpVCy4PwfDndnag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102974698</pqid></control><display><type>article</type><title>On the Benefits of Visual Stabilization for Frame- and Event-Based Perception</title><source>IEEE Electronic Library (IEL)</source><creator>Rodriguez-Gomez, J.P. ; Dios, J.R. Martinez-de ; Ollero, A. ; Gallego, G.</creator><creatorcontrib>Rodriguez-Gomez, J.P. ; Dios, J.R. Martinez-de ; Ollero, A. ; Gallego, G.</creatorcontrib><description>Vision-based perception systems are typically exposed to large orientation changes in different robot applications. In such conditions, their performance might be compromised due to the inherent complexity of processing data captured under challenging motion. Integration of mechanical stabilizers to compensate for the camera rotation is not always possible due to the robot payload constraints. This letter presents a processing-based stabilization approach to compensate the camera's rotational motion both on events and on frames (i.e., images). Assuming that the camera's attitude is available, we evaluate the benefits of stabilization in two perception applications: feature tracking and estimating the translation component of the camera's ego-motion. The validation is performed using synthetic data and sequences from well-known event-based vision datasets. The experiments unveil that stabilization can improve feature tracking and camera ego-motion estimation accuracy in 27.37% and 34.82%, respectively. Concurrently, stabilization can reduce the processing time of computing the camera's linear velocity by at least 25%.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3450290</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>biologically-inspired robots ; Cameras ; computer vision for automation ; Data processing ; Estimation ; Event camera ; Motion simulation ; Perception ; Robot dynamics ; Robot vision systems ; Robots ; sensor fusion ; Stabilization ; Synthetic data ; Task analysis ; Tracking ; Vision ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2024-10, Vol.9 (10), p.8802-8809</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-fd7188c8c9df480b06f1c93f79cb44f64114c09177e143fe387eb11bb1253ab73</cites><orcidid>0000-0001-9431-7831 ; 0000-0002-2672-9241 ; 0000-0001-7628-1660 ; 0000-0003-2155-2472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10648753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10648753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rodriguez-Gomez, J.P.</creatorcontrib><creatorcontrib>Dios, J.R. Martinez-de</creatorcontrib><creatorcontrib>Ollero, A.</creatorcontrib><creatorcontrib>Gallego, G.</creatorcontrib><title>On the Benefits of Visual Stabilization for Frame- and Event-Based Perception</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Vision-based perception systems are typically exposed to large orientation changes in different robot applications. In such conditions, their performance might be compromised due to the inherent complexity of processing data captured under challenging motion. Integration of mechanical stabilizers to compensate for the camera rotation is not always possible due to the robot payload constraints. This letter presents a processing-based stabilization approach to compensate the camera's rotational motion both on events and on frames (i.e., images). Assuming that the camera's attitude is available, we evaluate the benefits of stabilization in two perception applications: feature tracking and estimating the translation component of the camera's ego-motion. The validation is performed using synthetic data and sequences from well-known event-based vision datasets. The experiments unveil that stabilization can improve feature tracking and camera ego-motion estimation accuracy in 27.37% and 34.82%, respectively. Concurrently, stabilization can reduce the processing time of computing the camera's linear velocity by at least 25%.</description><subject>biologically-inspired robots</subject><subject>Cameras</subject><subject>computer vision for automation</subject><subject>Data processing</subject><subject>Estimation</subject><subject>Event camera</subject><subject>Motion simulation</subject><subject>Perception</subject><subject>Robot dynamics</subject><subject>Robot vision systems</subject><subject>Robots</subject><subject>sensor fusion</subject><subject>Stabilization</subject><subject>Synthetic data</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>Vision</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtrwzAUhUVpoSHN3qGDoLNTXUu2pDEJ6QNSUvpahSRfUYfETiWn0P76OiRDpnuG75wLHyHXwMYATN8tXifjnOVizEXBcs3OyCDnUmZcluX5Sb4ko5RWjDEocsl1MSDPy4Z2X0in2GCou0TbQD_rtLNr-tZZV6_rP9vVbUNDG-l9tBvMqG0qOv_BpsumNmFFXzB63O6pK3IR7Drh6HiH5ON-_j57zBbLh6fZZJF5kEWXhUqCUl55XQWhmGNlAK95kNo7IUIpAIRnGqREEDwgVxIdgHOQF9w6yYfk9rC7je33DlNnVu0uNv1Lw6EXIEWpVU-xA-Vjm1LEYLax3tj4a4CZvTfTezN7b-bora_cHCo1Ip7gpVCy4PwfDndnag</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Rodriguez-Gomez, J.P.</creator><creator>Dios, J.R. Martinez-de</creator><creator>Ollero, A.</creator><creator>Gallego, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9431-7831</orcidid><orcidid>https://orcid.org/0000-0002-2672-9241</orcidid><orcidid>https://orcid.org/0000-0001-7628-1660</orcidid><orcidid>https://orcid.org/0000-0003-2155-2472</orcidid></search><sort><creationdate>20241001</creationdate><title>On the Benefits of Visual Stabilization for Frame- and Event-Based Perception</title><author>Rodriguez-Gomez, J.P. ; Dios, J.R. Martinez-de ; Ollero, A. ; Gallego, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-fd7188c8c9df480b06f1c93f79cb44f64114c09177e143fe387eb11bb1253ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biologically-inspired robots</topic><topic>Cameras</topic><topic>computer vision for automation</topic><topic>Data processing</topic><topic>Estimation</topic><topic>Event camera</topic><topic>Motion simulation</topic><topic>Perception</topic><topic>Robot dynamics</topic><topic>Robot vision systems</topic><topic>Robots</topic><topic>sensor fusion</topic><topic>Stabilization</topic><topic>Synthetic data</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>Vision</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez-Gomez, J.P.</creatorcontrib><creatorcontrib>Dios, J.R. Martinez-de</creatorcontrib><creatorcontrib>Ollero, A.</creatorcontrib><creatorcontrib>Gallego, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodriguez-Gomez, J.P.</au><au>Dios, J.R. Martinez-de</au><au>Ollero, A.</au><au>Gallego, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Benefits of Visual Stabilization for Frame- and Event-Based Perception</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>9</volume><issue>10</issue><spage>8802</spage><epage>8809</epage><pages>8802-8809</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Vision-based perception systems are typically exposed to large orientation changes in different robot applications. In such conditions, their performance might be compromised due to the inherent complexity of processing data captured under challenging motion. Integration of mechanical stabilizers to compensate for the camera rotation is not always possible due to the robot payload constraints. This letter presents a processing-based stabilization approach to compensate the camera's rotational motion both on events and on frames (i.e., images). Assuming that the camera's attitude is available, we evaluate the benefits of stabilization in two perception applications: feature tracking and estimating the translation component of the camera's ego-motion. The validation is performed using synthetic data and sequences from well-known event-based vision datasets. The experiments unveil that stabilization can improve feature tracking and camera ego-motion estimation accuracy in 27.37% and 34.82%, respectively. Concurrently, stabilization can reduce the processing time of computing the camera's linear velocity by at least 25%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3450290</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9431-7831</orcidid><orcidid>https://orcid.org/0000-0002-2672-9241</orcidid><orcidid>https://orcid.org/0000-0001-7628-1660</orcidid><orcidid>https://orcid.org/0000-0003-2155-2472</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-10, Vol.9 (10), p.8802-8809 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_3102974698 |
source | IEEE Electronic Library (IEL) |
subjects | biologically-inspired robots Cameras computer vision for automation Data processing Estimation Event camera Motion simulation Perception Robot dynamics Robot vision systems Robots sensor fusion Stabilization Synthetic data Task analysis Tracking Vision Visualization |
title | On the Benefits of Visual Stabilization for Frame- and Event-Based Perception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Benefits%20of%20Visual%20Stabilization%20for%20Frame-%20and%20Event-Based%20Perception&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Rodriguez-Gomez,%20J.P.&rft.date=2024-10-01&rft.volume=9&rft.issue=10&rft.spage=8802&rft.epage=8809&rft.pages=8802-8809&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3450290&rft_dat=%3Cproquest_RIE%3E3102974698%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102974698&rft_id=info:pmid/&rft_ieee_id=10648753&rfr_iscdi=true |