Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems
In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. S...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2024-09, Vol.13 (9), p.2586-2590 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2590 |
---|---|
container_issue | 9 |
container_start_page | 2586 |
container_title | IEEE wireless communications letters |
container_volume | 13 |
creator | Tong, Weiqiang Xu, Wenjun Wang, Fengyu Ni, Wanli Zhang, Jinglin |
description | In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels. |
doi_str_mv | 10.1109/LWC.2024.3431525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3102965111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606012</ieee_id><sourcerecordid>3102965111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-da357d1d6f69c3e18a3d156faea2067ff8267f3e6cf8ee62a706f0168236d9df3</originalsourceid><addsrcrecordid>eNpNkEFPwzAMhSMEEtPYnQOHSpw74qRJ2-MoAyYVITEQxyhqHNFpbUfSHvbvSemE8MG29J5t-SPkGugSgOZ35WexZJQlS55wEEyckRkDyWLGE3H-1_P0kiy839EQkgKDbEbKh9rawdddG710BvfxvfZoouJLty3uo7Xv60b3o2w7F71ttvGqNqOha5qhratJ2x59j42_IhdW7z0uTnVOPh7X78VzXL4-bYpVGVeQij42movUgJFW5hVHyDQ3IKTVqBmVqbUZC5mjrGyGKJlOqbQUZMa4NLmxfE5up70H130P6Hu16wbXhpOKA2W5FAAQXHRyVa7z3qFVBxeecUcFVI3YVMCmRmzqhC2M3EwjNSL-s8tfXvwHLnxn1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102965111</pqid></control><display><type>article</type><title>Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Tong, Weiqiang ; Xu, Wenjun ; Wang, Fengyu ; Ni, Wanli ; Zhang, Jinglin</creator><creatorcontrib>Tong, Weiqiang ; Xu, Wenjun ; Wang, Fengyu ; Ni, Wanli ; Zhang, Jinglin</creatorcontrib><description>In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2024.3431525</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel estimation ; Computational modeling ; diffusion model ; Diffusion models ; Estimation ; Noise levels ; Phase noise ; reconfigurable intelligent surface ; Reconfigurable intelligent surfaces ; Robustness ; Sampling ; Training ; Wireless communication systems</subject><ispartof>IEEE wireless communications letters, 2024-09, Vol.13 (9), p.2586-2590</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-da357d1d6f69c3e18a3d156faea2067ff8267f3e6cf8ee62a706f0168236d9df3</cites><orcidid>0000-0003-0436-2685 ; 0000-0002-9379-2240 ; 0000-0003-4490-2500 ; 0000-0002-5485-9414 ; 0000-0001-8767-4742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606012$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10606012$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tong, Weiqiang</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Wang, Fengyu</creatorcontrib><creatorcontrib>Ni, Wanli</creatorcontrib><creatorcontrib>Zhang, Jinglin</creatorcontrib><title>Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels.</description><subject>Channel estimation</subject><subject>Computational modeling</subject><subject>diffusion model</subject><subject>Diffusion models</subject><subject>Estimation</subject><subject>Noise levels</subject><subject>Phase noise</subject><subject>reconfigurable intelligent surface</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Training</subject><subject>Wireless communication systems</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwzAMhSMEEtPYnQOHSpw74qRJ2-MoAyYVITEQxyhqHNFpbUfSHvbvSemE8MG29J5t-SPkGugSgOZ35WexZJQlS55wEEyckRkDyWLGE3H-1_P0kiy839EQkgKDbEbKh9rawdddG710BvfxvfZoouJLty3uo7Xv60b3o2w7F71ttvGqNqOha5qhratJ2x59j42_IhdW7z0uTnVOPh7X78VzXL4-bYpVGVeQij42movUgJFW5hVHyDQ3IKTVqBmVqbUZC5mjrGyGKJlOqbQUZMa4NLmxfE5up70H130P6Hu16wbXhpOKA2W5FAAQXHRyVa7z3qFVBxeecUcFVI3YVMCmRmzqhC2M3EwjNSL-s8tfXvwHLnxn1g</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Tong, Weiqiang</creator><creator>Xu, Wenjun</creator><creator>Wang, Fengyu</creator><creator>Ni, Wanli</creator><creator>Zhang, Jinglin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0436-2685</orcidid><orcidid>https://orcid.org/0000-0002-9379-2240</orcidid><orcidid>https://orcid.org/0000-0003-4490-2500</orcidid><orcidid>https://orcid.org/0000-0002-5485-9414</orcidid><orcidid>https://orcid.org/0000-0001-8767-4742</orcidid></search><sort><creationdate>20240901</creationdate><title>Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems</title><author>Tong, Weiqiang ; Xu, Wenjun ; Wang, Fengyu ; Ni, Wanli ; Zhang, Jinglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-da357d1d6f69c3e18a3d156faea2067ff8267f3e6cf8ee62a706f0168236d9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel estimation</topic><topic>Computational modeling</topic><topic>diffusion model</topic><topic>Diffusion models</topic><topic>Estimation</topic><topic>Noise levels</topic><topic>Phase noise</topic><topic>reconfigurable intelligent surface</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Training</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Weiqiang</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Wang, Fengyu</creatorcontrib><creatorcontrib>Ni, Wanli</creatorcontrib><creatorcontrib>Zhang, Jinglin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong, Weiqiang</au><au>Xu, Wenjun</au><au>Wang, Fengyu</au><au>Ni, Wanli</au><au>Zhang, Jinglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>2586</spage><epage>2590</epage><pages>2586-2590</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2024.3431525</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0436-2685</orcidid><orcidid>https://orcid.org/0000-0002-9379-2240</orcidid><orcidid>https://orcid.org/0000-0003-4490-2500</orcidid><orcidid>https://orcid.org/0000-0002-5485-9414</orcidid><orcidid>https://orcid.org/0000-0001-8767-4742</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2024-09, Vol.13 (9), p.2586-2590 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_proquest_journals_3102965111 |
source | IEEE Electronic Library (IEL) |
subjects | Channel estimation Computational modeling diffusion model Diffusion models Estimation Noise levels Phase noise reconfigurable intelligent surface Reconfigurable intelligent surfaces Robustness Sampling Training Wireless communication systems |
title | Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Model-Based%20Channel%20Estimation%20for%20RIS-Aided%20Communication%20Systems&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Tong,%20Weiqiang&rft.date=2024-09-01&rft.volume=13&rft.issue=9&rft.spage=2586&rft.epage=2590&rft.pages=2586-2590&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2024.3431525&rft_dat=%3Cproquest_RIE%3E3102965111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102965111&rft_id=info:pmid/&rft_ieee_id=10606012&rfr_iscdi=true |