Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems

In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2024-09, Vol.13 (9), p.2586-2590
Hauptverfasser: Tong, Weiqiang, Xu, Wenjun, Wang, Fengyu, Ni, Wanli, Zhang, Jinglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2590
container_issue 9
container_start_page 2586
container_title IEEE wireless communications letters
container_volume 13
creator Tong, Weiqiang
Xu, Wenjun
Wang, Fengyu
Ni, Wanli
Zhang, Jinglin
description In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels.
doi_str_mv 10.1109/LWC.2024.3431525
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3102965111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606012</ieee_id><sourcerecordid>3102965111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-da357d1d6f69c3e18a3d156faea2067ff8267f3e6cf8ee62a706f0168236d9df3</originalsourceid><addsrcrecordid>eNpNkEFPwzAMhSMEEtPYnQOHSpw74qRJ2-MoAyYVITEQxyhqHNFpbUfSHvbvSemE8MG29J5t-SPkGugSgOZ35WexZJQlS55wEEyckRkDyWLGE3H-1_P0kiy839EQkgKDbEbKh9rawdddG710BvfxvfZoouJLty3uo7Xv60b3o2w7F71ttvGqNqOha5qhratJ2x59j42_IhdW7z0uTnVOPh7X78VzXL4-bYpVGVeQij42movUgJFW5hVHyDQ3IKTVqBmVqbUZC5mjrGyGKJlOqbQUZMa4NLmxfE5up70H130P6Hu16wbXhpOKA2W5FAAQXHRyVa7z3qFVBxeecUcFVI3YVMCmRmzqhC2M3EwjNSL-s8tfXvwHLnxn1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102965111</pqid></control><display><type>article</type><title>Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Tong, Weiqiang ; Xu, Wenjun ; Wang, Fengyu ; Ni, Wanli ; Zhang, Jinglin</creator><creatorcontrib>Tong, Weiqiang ; Xu, Wenjun ; Wang, Fengyu ; Ni, Wanli ; Zhang, Jinglin</creatorcontrib><description>In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2024.3431525</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel estimation ; Computational modeling ; diffusion model ; Diffusion models ; Estimation ; Noise levels ; Phase noise ; reconfigurable intelligent surface ; Reconfigurable intelligent surfaces ; Robustness ; Sampling ; Training ; Wireless communication systems</subject><ispartof>IEEE wireless communications letters, 2024-09, Vol.13 (9), p.2586-2590</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-da357d1d6f69c3e18a3d156faea2067ff8267f3e6cf8ee62a706f0168236d9df3</cites><orcidid>0000-0003-0436-2685 ; 0000-0002-9379-2240 ; 0000-0003-4490-2500 ; 0000-0002-5485-9414 ; 0000-0001-8767-4742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606012$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10606012$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tong, Weiqiang</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Wang, Fengyu</creatorcontrib><creatorcontrib>Ni, Wanli</creatorcontrib><creatorcontrib>Zhang, Jinglin</creatorcontrib><title>Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels.</description><subject>Channel estimation</subject><subject>Computational modeling</subject><subject>diffusion model</subject><subject>Diffusion models</subject><subject>Estimation</subject><subject>Noise levels</subject><subject>Phase noise</subject><subject>reconfigurable intelligent surface</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Training</subject><subject>Wireless communication systems</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwzAMhSMEEtPYnQOHSpw74qRJ2-MoAyYVITEQxyhqHNFpbUfSHvbvSemE8MG29J5t-SPkGugSgOZ35WexZJQlS55wEEyckRkDyWLGE3H-1_P0kiy839EQkgKDbEbKh9rawdddG710BvfxvfZoouJLty3uo7Xv60b3o2w7F71ttvGqNqOha5qhratJ2x59j42_IhdW7z0uTnVOPh7X78VzXL4-bYpVGVeQij42movUgJFW5hVHyDQ3IKTVqBmVqbUZC5mjrGyGKJlOqbQUZMa4NLmxfE5up70H130P6Hu16wbXhpOKA2W5FAAQXHRyVa7z3qFVBxeecUcFVI3YVMCmRmzqhC2M3EwjNSL-s8tfXvwHLnxn1g</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Tong, Weiqiang</creator><creator>Xu, Wenjun</creator><creator>Wang, Fengyu</creator><creator>Ni, Wanli</creator><creator>Zhang, Jinglin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0436-2685</orcidid><orcidid>https://orcid.org/0000-0002-9379-2240</orcidid><orcidid>https://orcid.org/0000-0003-4490-2500</orcidid><orcidid>https://orcid.org/0000-0002-5485-9414</orcidid><orcidid>https://orcid.org/0000-0001-8767-4742</orcidid></search><sort><creationdate>20240901</creationdate><title>Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems</title><author>Tong, Weiqiang ; Xu, Wenjun ; Wang, Fengyu ; Ni, Wanli ; Zhang, Jinglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-da357d1d6f69c3e18a3d156faea2067ff8267f3e6cf8ee62a706f0168236d9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel estimation</topic><topic>Computational modeling</topic><topic>diffusion model</topic><topic>Diffusion models</topic><topic>Estimation</topic><topic>Noise levels</topic><topic>Phase noise</topic><topic>reconfigurable intelligent surface</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Training</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Weiqiang</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Wang, Fengyu</creatorcontrib><creatorcontrib>Ni, Wanli</creatorcontrib><creatorcontrib>Zhang, Jinglin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong, Weiqiang</au><au>Xu, Wenjun</au><au>Wang, Fengyu</au><au>Ni, Wanli</au><au>Zhang, Jinglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>2586</spage><epage>2590</epage><pages>2586-2590</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2024.3431525</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0436-2685</orcidid><orcidid>https://orcid.org/0000-0002-9379-2240</orcidid><orcidid>https://orcid.org/0000-0003-4490-2500</orcidid><orcidid>https://orcid.org/0000-0002-5485-9414</orcidid><orcidid>https://orcid.org/0000-0001-8767-4742</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2024-09, Vol.13 (9), p.2586-2590
issn 2162-2337
2162-2345
language eng
recordid cdi_proquest_journals_3102965111
source IEEE Electronic Library (IEL)
subjects Channel estimation
Computational modeling
diffusion model
Diffusion models
Estimation
Noise levels
Phase noise
reconfigurable intelligent surface
Reconfigurable intelligent surfaces
Robustness
Sampling
Training
Wireless communication systems
title Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Model-Based%20Channel%20Estimation%20for%20RIS-Aided%20Communication%20Systems&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Tong,%20Weiqiang&rft.date=2024-09-01&rft.volume=13&rft.issue=9&rft.spage=2586&rft.epage=2590&rft.pages=2586-2590&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2024.3431525&rft_dat=%3Cproquest_RIE%3E3102965111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102965111&rft_id=info:pmid/&rft_ieee_id=10606012&rfr_iscdi=true