Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings
In the present work, the Ti 0.8 W 0.25 Cr 0.5 FeCo 1.75 Ni 3 AlB 0.6 (molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W 2 CoB 2 -type crystal structure. The resulting ingot has been u...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2024-08, Vol.76 (8), p.3960-3968 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3968 |
---|---|
container_issue | 8 |
container_start_page | 3960 |
container_title | JOM (1989) |
container_volume | 76 |
creator | Myslyvchenko, Oleksandr Lytvyn, Roman Grinkevich, Konstantin Zgalat-Lozynskyy, Ostap Bondar, Anatolii Shyrokov, Oleksandr Ivanchenko, Serhii Bloschanevich, Oleksandr Stegniy, Anatoliy |
description | In the present work, the Ti
0.8
W
0.25
Cr
0.5
FeCo
1.75
Ni
3
AlB
0.6
(molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W
2
CoB
2
-type crystal structure. The resulting ingot has been used to fabricate electrodes, employed for the electrospark deposition (ESD) of coatings at discharge energies of 0.52 J and 1.1 J. The microhardness of the deposited coatings is about 11 GPa, and their thickness is 25–30 and 30–35 μm at discharge energies of 0.52 and 1.1 J, respectively. The microstructure of the obtained coatings is more homogeneous than that of the cast alloys, and, according to the XRD data, they contain the BCC and FCC solid solutions, as well as a small amount of boride. It has been established that the laser treatment of the coatings facilitates the complete dissolution of boron in the solid solutions and leads to the formation of a heat-affected zone, whereas the hardness of the surface layer remains almost unchanged. The wear resistance of the as-deposited and laser-treated coatings has been investigated. |
doi_str_mv | 10.1007/s11837-024-06552-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102957684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102957684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d306768fd1856eac64bafc1921bd9e41ccf2405bea2dd16f713e31d7981381bd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMTvc-SNOxhJailTBUsRo3MQpKW0S7HRofz2GILEx-Yb3ec_3EHKNECOAuvWIKVcUmKCQSMno8YSMUApOMZV4GmYQioqUp-fkwvsNBEhkOCJvC-Oti5bOmn5nmz5qq2i6tUXvWt8Z90Hvbdf6urdltKwhTl8hZjJ3EMuZzVuMlXyq-WR7B3ESzev1O502Ae0OUd6avm7W_pKcVWbr7dXvOyYvs-kyn9PF88NjPlnQginoackhUUlaleG_iTVFIlamKjBjuCozK7AoKiZArqxhZYlJpZBbjqXKUuRpyPAxuRl6O9d-7q3v9abduyas1ByBZTK0i5BiQ6oI93lnK925emfcQSPob5N6MKmDSf1jUh8DxAfIh3Cztu6v-h_qCzwPdFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102957684</pqid></control><display><type>article</type><title>Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings</title><source>SpringerLink Journals</source><creator>Myslyvchenko, Oleksandr ; Lytvyn, Roman ; Grinkevich, Konstantin ; Zgalat-Lozynskyy, Ostap ; Bondar, Anatolii ; Shyrokov, Oleksandr ; Ivanchenko, Serhii ; Bloschanevich, Oleksandr ; Stegniy, Anatoliy</creator><creatorcontrib>Myslyvchenko, Oleksandr ; Lytvyn, Roman ; Grinkevich, Konstantin ; Zgalat-Lozynskyy, Ostap ; Bondar, Anatolii ; Shyrokov, Oleksandr ; Ivanchenko, Serhii ; Bloschanevich, Oleksandr ; Stegniy, Anatoliy</creatorcontrib><description>In the present work, the Ti
0.8
W
0.25
Cr
0.5
FeCo
1.75
Ni
3
AlB
0.6
(molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W
2
CoB
2
-type crystal structure. The resulting ingot has been used to fabricate electrodes, employed for the electrospark deposition (ESD) of coatings at discharge energies of 0.52 J and 1.1 J. The microhardness of the deposited coatings is about 11 GPa, and their thickness is 25–30 and 30–35 μm at discharge energies of 0.52 and 1.1 J, respectively. The microstructure of the obtained coatings is more homogeneous than that of the cast alloys, and, according to the XRD data, they contain the BCC and FCC solid solutions, as well as a small amount of boride. It has been established that the laser treatment of the coatings facilitates the complete dissolution of boron in the solid solutions and leads to the formation of a heat-affected zone, whereas the hardness of the surface layer remains almost unchanged. The wear resistance of the as-deposited and laser-treated coatings has been investigated.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-024-06552-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Functional and Structural Thin Films and Coatings ; Alloys ; Arc deposition ; Body centered cubic lattice ; Boron ; Casting alloys ; Chemistry/Food Science ; Coatings ; Crystal structure ; Discharge ; Earth Sciences ; Electric arc melting ; Electric arcs ; Electrodes ; Engineering ; Entropy ; Environment ; Face centered cubic lattice ; Friction ; Heat affected zone ; Heat treatment ; High entropy alloys ; Ingot casting ; Investigations ; Lasers ; Metallurgical constituents ; Metals ; Microhardness ; Physics ; Powder metallurgy ; Protective coatings ; Radiation ; Silicon nitride ; Solid solutions ; Surface layers ; Thickness ; Titanium ; Wear resistance</subject><ispartof>JOM (1989), 2024-08, Vol.76 (8), p.3960-3968</ispartof><rights>The Minerals, Metals & Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Aug 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d306768fd1856eac64bafc1921bd9e41ccf2405bea2dd16f713e31d7981381bd3</cites><orcidid>0000-0003-4903-6488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-024-06552-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-024-06552-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Myslyvchenko, Oleksandr</creatorcontrib><creatorcontrib>Lytvyn, Roman</creatorcontrib><creatorcontrib>Grinkevich, Konstantin</creatorcontrib><creatorcontrib>Zgalat-Lozynskyy, Ostap</creatorcontrib><creatorcontrib>Bondar, Anatolii</creatorcontrib><creatorcontrib>Shyrokov, Oleksandr</creatorcontrib><creatorcontrib>Ivanchenko, Serhii</creatorcontrib><creatorcontrib>Bloschanevich, Oleksandr</creatorcontrib><creatorcontrib>Stegniy, Anatoliy</creatorcontrib><title>Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>In the present work, the Ti
0.8
W
0.25
Cr
0.5
FeCo
1.75
Ni
3
AlB
0.6
(molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W
2
CoB
2
-type crystal structure. The resulting ingot has been used to fabricate electrodes, employed for the electrospark deposition (ESD) of coatings at discharge energies of 0.52 J and 1.1 J. The microhardness of the deposited coatings is about 11 GPa, and their thickness is 25–30 and 30–35 μm at discharge energies of 0.52 and 1.1 J, respectively. The microstructure of the obtained coatings is more homogeneous than that of the cast alloys, and, according to the XRD data, they contain the BCC and FCC solid solutions, as well as a small amount of boride. It has been established that the laser treatment of the coatings facilitates the complete dissolution of boron in the solid solutions and leads to the formation of a heat-affected zone, whereas the hardness of the surface layer remains almost unchanged. The wear resistance of the as-deposited and laser-treated coatings has been investigated.</description><subject>Advanced Functional and Structural Thin Films and Coatings</subject><subject>Alloys</subject><subject>Arc deposition</subject><subject>Body centered cubic lattice</subject><subject>Boron</subject><subject>Casting alloys</subject><subject>Chemistry/Food Science</subject><subject>Coatings</subject><subject>Crystal structure</subject><subject>Discharge</subject><subject>Earth Sciences</subject><subject>Electric arc melting</subject><subject>Electric arcs</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Environment</subject><subject>Face centered cubic lattice</subject><subject>Friction</subject><subject>Heat affected zone</subject><subject>Heat treatment</subject><subject>High entropy alloys</subject><subject>Ingot casting</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Metallurgical constituents</subject><subject>Metals</subject><subject>Microhardness</subject><subject>Physics</subject><subject>Powder metallurgy</subject><subject>Protective coatings</subject><subject>Radiation</subject><subject>Silicon nitride</subject><subject>Solid solutions</subject><subject>Surface layers</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Wear resistance</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMTvc-SNOxhJailTBUsRo3MQpKW0S7HRofz2GILEx-Yb3ec_3EHKNECOAuvWIKVcUmKCQSMno8YSMUApOMZV4GmYQioqUp-fkwvsNBEhkOCJvC-Oti5bOmn5nmz5qq2i6tUXvWt8Z90Hvbdf6urdltKwhTl8hZjJ3EMuZzVuMlXyq-WR7B3ESzev1O502Ae0OUd6avm7W_pKcVWbr7dXvOyYvs-kyn9PF88NjPlnQginoackhUUlaleG_iTVFIlamKjBjuCozK7AoKiZArqxhZYlJpZBbjqXKUuRpyPAxuRl6O9d-7q3v9abduyas1ByBZTK0i5BiQ6oI93lnK925emfcQSPob5N6MKmDSf1jUh8DxAfIh3Cztu6v-h_qCzwPdFM</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Myslyvchenko, Oleksandr</creator><creator>Lytvyn, Roman</creator><creator>Grinkevich, Konstantin</creator><creator>Zgalat-Lozynskyy, Ostap</creator><creator>Bondar, Anatolii</creator><creator>Shyrokov, Oleksandr</creator><creator>Ivanchenko, Serhii</creator><creator>Bloschanevich, Oleksandr</creator><creator>Stegniy, Anatoliy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4903-6488</orcidid></search><sort><creationdate>20240801</creationdate><title>Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings</title><author>Myslyvchenko, Oleksandr ; Lytvyn, Roman ; Grinkevich, Konstantin ; Zgalat-Lozynskyy, Ostap ; Bondar, Anatolii ; Shyrokov, Oleksandr ; Ivanchenko, Serhii ; Bloschanevich, Oleksandr ; Stegniy, Anatoliy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d306768fd1856eac64bafc1921bd9e41ccf2405bea2dd16f713e31d7981381bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced Functional and Structural Thin Films and Coatings</topic><topic>Alloys</topic><topic>Arc deposition</topic><topic>Body centered cubic lattice</topic><topic>Boron</topic><topic>Casting alloys</topic><topic>Chemistry/Food Science</topic><topic>Coatings</topic><topic>Crystal structure</topic><topic>Discharge</topic><topic>Earth Sciences</topic><topic>Electric arc melting</topic><topic>Electric arcs</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Environment</topic><topic>Face centered cubic lattice</topic><topic>Friction</topic><topic>Heat affected zone</topic><topic>Heat treatment</topic><topic>High entropy alloys</topic><topic>Ingot casting</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Metallurgical constituents</topic><topic>Metals</topic><topic>Microhardness</topic><topic>Physics</topic><topic>Powder metallurgy</topic><topic>Protective coatings</topic><topic>Radiation</topic><topic>Silicon nitride</topic><topic>Solid solutions</topic><topic>Surface layers</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myslyvchenko, Oleksandr</creatorcontrib><creatorcontrib>Lytvyn, Roman</creatorcontrib><creatorcontrib>Grinkevich, Konstantin</creatorcontrib><creatorcontrib>Zgalat-Lozynskyy, Ostap</creatorcontrib><creatorcontrib>Bondar, Anatolii</creatorcontrib><creatorcontrib>Shyrokov, Oleksandr</creatorcontrib><creatorcontrib>Ivanchenko, Serhii</creatorcontrib><creatorcontrib>Bloschanevich, Oleksandr</creatorcontrib><creatorcontrib>Stegniy, Anatoliy</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myslyvchenko, Oleksandr</au><au>Lytvyn, Roman</au><au>Grinkevich, Konstantin</au><au>Zgalat-Lozynskyy, Ostap</au><au>Bondar, Anatolii</au><au>Shyrokov, Oleksandr</au><au>Ivanchenko, Serhii</au><au>Bloschanevich, Oleksandr</au><au>Stegniy, Anatoliy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>76</volume><issue>8</issue><spage>3960</spage><epage>3968</epage><pages>3960-3968</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>In the present work, the Ti
0.8
W
0.25
Cr
0.5
FeCo
1.75
Ni
3
AlB
0.6
(molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W
2
CoB
2
-type crystal structure. The resulting ingot has been used to fabricate electrodes, employed for the electrospark deposition (ESD) of coatings at discharge energies of 0.52 J and 1.1 J. The microhardness of the deposited coatings is about 11 GPa, and their thickness is 25–30 and 30–35 μm at discharge energies of 0.52 and 1.1 J, respectively. The microstructure of the obtained coatings is more homogeneous than that of the cast alloys, and, according to the XRD data, they contain the BCC and FCC solid solutions, as well as a small amount of boride. It has been established that the laser treatment of the coatings facilitates the complete dissolution of boron in the solid solutions and leads to the formation of a heat-affected zone, whereas the hardness of the surface layer remains almost unchanged. The wear resistance of the as-deposited and laser-treated coatings has been investigated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-024-06552-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4903-6488</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2024-08, Vol.76 (8), p.3960-3968 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_3102957684 |
source | SpringerLink Journals |
subjects | Advanced Functional and Structural Thin Films and Coatings Alloys Arc deposition Body centered cubic lattice Boron Casting alloys Chemistry/Food Science Coatings Crystal structure Discharge Earth Sciences Electric arc melting Electric arcs Electrodes Engineering Entropy Environment Face centered cubic lattice Friction Heat affected zone Heat treatment High entropy alloys Ingot casting Investigations Lasers Metallurgical constituents Metals Microhardness Physics Powder metallurgy Protective coatings Radiation Silicon nitride Solid solutions Surface layers Thickness Titanium Wear resistance |
title | Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Treatment%20of%20Electrospark-Deposited%20Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6%20High-Entropy%20Coatings&rft.jtitle=JOM%20(1989)&rft.au=Myslyvchenko,%20Oleksandr&rft.date=2024-08-01&rft.volume=76&rft.issue=8&rft.spage=3960&rft.epage=3968&rft.pages=3960-3968&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-024-06552-z&rft_dat=%3Cproquest_cross%3E3102957684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102957684&rft_id=info:pmid/&rfr_iscdi=true |