Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings

In the present work, the Ti 0.8 W 0.25 Cr 0.5 FeCo 1.75 Ni 3 AlB 0.6 (molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W 2 CoB 2 -type crystal structure. The resulting ingot has been u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2024-08, Vol.76 (8), p.3960-3968
Hauptverfasser: Myslyvchenko, Oleksandr, Lytvyn, Roman, Grinkevich, Konstantin, Zgalat-Lozynskyy, Ostap, Bondar, Anatolii, Shyrokov, Oleksandr, Ivanchenko, Serhii, Bloschanevich, Oleksandr, Stegniy, Anatoliy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3968
container_issue 8
container_start_page 3960
container_title JOM (1989)
container_volume 76
creator Myslyvchenko, Oleksandr
Lytvyn, Roman
Grinkevich, Konstantin
Zgalat-Lozynskyy, Ostap
Bondar, Anatolii
Shyrokov, Oleksandr
Ivanchenko, Serhii
Bloschanevich, Oleksandr
Stegniy, Anatoliy
description In the present work, the Ti 0.8 W 0.25 Cr 0.5 FeCo 1.75 Ni 3 AlB 0.6 (molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W 2 CoB 2 -type crystal structure. The resulting ingot has been used to fabricate electrodes, employed for the electrospark deposition (ESD) of coatings at discharge energies of 0.52 J and 1.1 J. The microhardness of the deposited coatings is about 11 GPa, and their thickness is 25–30 and 30–35 μm at discharge energies of 0.52 and 1.1 J, respectively. The microstructure of the obtained coatings is more homogeneous than that of the cast alloys, and, according to the XRD data, they contain the BCC and FCC solid solutions, as well as a small amount of boride. It has been established that the laser treatment of the coatings facilitates the complete dissolution of boron in the solid solutions and leads to the formation of a heat-affected zone, whereas the hardness of the surface layer remains almost unchanged. The wear resistance of the as-deposited and laser-treated coatings has been investigated.
doi_str_mv 10.1007/s11837-024-06552-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102957684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102957684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d306768fd1856eac64bafc1921bd9e41ccf2405bea2dd16f713e31d7981381bd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMTvc-SNOxhJailTBUsRo3MQpKW0S7HRofz2GILEx-Yb3ec_3EHKNECOAuvWIKVcUmKCQSMno8YSMUApOMZV4GmYQioqUp-fkwvsNBEhkOCJvC-Oti5bOmn5nmz5qq2i6tUXvWt8Z90Hvbdf6urdltKwhTl8hZjJ3EMuZzVuMlXyq-WR7B3ESzev1O502Ae0OUd6avm7W_pKcVWbr7dXvOyYvs-kyn9PF88NjPlnQginoackhUUlaleG_iTVFIlamKjBjuCozK7AoKiZArqxhZYlJpZBbjqXKUuRpyPAxuRl6O9d-7q3v9abduyas1ByBZTK0i5BiQ6oI93lnK925emfcQSPob5N6MKmDSf1jUh8DxAfIh3Cztu6v-h_qCzwPdFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102957684</pqid></control><display><type>article</type><title>Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings</title><source>SpringerLink Journals</source><creator>Myslyvchenko, Oleksandr ; Lytvyn, Roman ; Grinkevich, Konstantin ; Zgalat-Lozynskyy, Ostap ; Bondar, Anatolii ; Shyrokov, Oleksandr ; Ivanchenko, Serhii ; Bloschanevich, Oleksandr ; Stegniy, Anatoliy</creator><creatorcontrib>Myslyvchenko, Oleksandr ; Lytvyn, Roman ; Grinkevich, Konstantin ; Zgalat-Lozynskyy, Ostap ; Bondar, Anatolii ; Shyrokov, Oleksandr ; Ivanchenko, Serhii ; Bloschanevich, Oleksandr ; Stegniy, Anatoliy</creatorcontrib><description>In the present work, the Ti 0.8 W 0.25 Cr 0.5 FeCo 1.75 Ni 3 AlB 0.6 (molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W 2 CoB 2 -type crystal structure. The resulting ingot has been used to fabricate electrodes, employed for the electrospark deposition (ESD) of coatings at discharge energies of 0.52 J and 1.1 J. The microhardness of the deposited coatings is about 11 GPa, and their thickness is 25–30 and 30–35 μm at discharge energies of 0.52 and 1.1 J, respectively. The microstructure of the obtained coatings is more homogeneous than that of the cast alloys, and, according to the XRD data, they contain the BCC and FCC solid solutions, as well as a small amount of boride. It has been established that the laser treatment of the coatings facilitates the complete dissolution of boron in the solid solutions and leads to the formation of a heat-affected zone, whereas the hardness of the surface layer remains almost unchanged. The wear resistance of the as-deposited and laser-treated coatings has been investigated.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-024-06552-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Functional and Structural Thin Films and Coatings ; Alloys ; Arc deposition ; Body centered cubic lattice ; Boron ; Casting alloys ; Chemistry/Food Science ; Coatings ; Crystal structure ; Discharge ; Earth Sciences ; Electric arc melting ; Electric arcs ; Electrodes ; Engineering ; Entropy ; Environment ; Face centered cubic lattice ; Friction ; Heat affected zone ; Heat treatment ; High entropy alloys ; Ingot casting ; Investigations ; Lasers ; Metallurgical constituents ; Metals ; Microhardness ; Physics ; Powder metallurgy ; Protective coatings ; Radiation ; Silicon nitride ; Solid solutions ; Surface layers ; Thickness ; Titanium ; Wear resistance</subject><ispartof>JOM (1989), 2024-08, Vol.76 (8), p.3960-3968</ispartof><rights>The Minerals, Metals &amp; Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Aug 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d306768fd1856eac64bafc1921bd9e41ccf2405bea2dd16f713e31d7981381bd3</cites><orcidid>0000-0003-4903-6488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-024-06552-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-024-06552-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Myslyvchenko, Oleksandr</creatorcontrib><creatorcontrib>Lytvyn, Roman</creatorcontrib><creatorcontrib>Grinkevich, Konstantin</creatorcontrib><creatorcontrib>Zgalat-Lozynskyy, Ostap</creatorcontrib><creatorcontrib>Bondar, Anatolii</creatorcontrib><creatorcontrib>Shyrokov, Oleksandr</creatorcontrib><creatorcontrib>Ivanchenko, Serhii</creatorcontrib><creatorcontrib>Bloschanevich, Oleksandr</creatorcontrib><creatorcontrib>Stegniy, Anatoliy</creatorcontrib><title>Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>In the present work, the Ti 0.8 W 0.25 Cr 0.5 FeCo 1.75 Ni 3 AlB 0.6 (molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W 2 CoB 2 -type crystal structure. The resulting ingot has been used to fabricate electrodes, employed for the electrospark deposition (ESD) of coatings at discharge energies of 0.52 J and 1.1 J. The microhardness of the deposited coatings is about 11 GPa, and their thickness is 25–30 and 30–35 μm at discharge energies of 0.52 and 1.1 J, respectively. The microstructure of the obtained coatings is more homogeneous than that of the cast alloys, and, according to the XRD data, they contain the BCC and FCC solid solutions, as well as a small amount of boride. It has been established that the laser treatment of the coatings facilitates the complete dissolution of boron in the solid solutions and leads to the formation of a heat-affected zone, whereas the hardness of the surface layer remains almost unchanged. The wear resistance of the as-deposited and laser-treated coatings has been investigated.</description><subject>Advanced Functional and Structural Thin Films and Coatings</subject><subject>Alloys</subject><subject>Arc deposition</subject><subject>Body centered cubic lattice</subject><subject>Boron</subject><subject>Casting alloys</subject><subject>Chemistry/Food Science</subject><subject>Coatings</subject><subject>Crystal structure</subject><subject>Discharge</subject><subject>Earth Sciences</subject><subject>Electric arc melting</subject><subject>Electric arcs</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Environment</subject><subject>Face centered cubic lattice</subject><subject>Friction</subject><subject>Heat affected zone</subject><subject>Heat treatment</subject><subject>High entropy alloys</subject><subject>Ingot casting</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Metallurgical constituents</subject><subject>Metals</subject><subject>Microhardness</subject><subject>Physics</subject><subject>Powder metallurgy</subject><subject>Protective coatings</subject><subject>Radiation</subject><subject>Silicon nitride</subject><subject>Solid solutions</subject><subject>Surface layers</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Wear resistance</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMTvc-SNOxhJailTBUsRo3MQpKW0S7HRofz2GILEx-Yb3ec_3EHKNECOAuvWIKVcUmKCQSMno8YSMUApOMZV4GmYQioqUp-fkwvsNBEhkOCJvC-Oti5bOmn5nmz5qq2i6tUXvWt8Z90Hvbdf6urdltKwhTl8hZjJ3EMuZzVuMlXyq-WR7B3ESzev1O502Ae0OUd6avm7W_pKcVWbr7dXvOyYvs-kyn9PF88NjPlnQginoackhUUlaleG_iTVFIlamKjBjuCozK7AoKiZArqxhZYlJpZBbjqXKUuRpyPAxuRl6O9d-7q3v9abduyas1ByBZTK0i5BiQ6oI93lnK925emfcQSPob5N6MKmDSf1jUh8DxAfIh3Cztu6v-h_qCzwPdFM</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Myslyvchenko, Oleksandr</creator><creator>Lytvyn, Roman</creator><creator>Grinkevich, Konstantin</creator><creator>Zgalat-Lozynskyy, Ostap</creator><creator>Bondar, Anatolii</creator><creator>Shyrokov, Oleksandr</creator><creator>Ivanchenko, Serhii</creator><creator>Bloschanevich, Oleksandr</creator><creator>Stegniy, Anatoliy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4903-6488</orcidid></search><sort><creationdate>20240801</creationdate><title>Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings</title><author>Myslyvchenko, Oleksandr ; Lytvyn, Roman ; Grinkevich, Konstantin ; Zgalat-Lozynskyy, Ostap ; Bondar, Anatolii ; Shyrokov, Oleksandr ; Ivanchenko, Serhii ; Bloschanevich, Oleksandr ; Stegniy, Anatoliy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d306768fd1856eac64bafc1921bd9e41ccf2405bea2dd16f713e31d7981381bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced Functional and Structural Thin Films and Coatings</topic><topic>Alloys</topic><topic>Arc deposition</topic><topic>Body centered cubic lattice</topic><topic>Boron</topic><topic>Casting alloys</topic><topic>Chemistry/Food Science</topic><topic>Coatings</topic><topic>Crystal structure</topic><topic>Discharge</topic><topic>Earth Sciences</topic><topic>Electric arc melting</topic><topic>Electric arcs</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Environment</topic><topic>Face centered cubic lattice</topic><topic>Friction</topic><topic>Heat affected zone</topic><topic>Heat treatment</topic><topic>High entropy alloys</topic><topic>Ingot casting</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Metallurgical constituents</topic><topic>Metals</topic><topic>Microhardness</topic><topic>Physics</topic><topic>Powder metallurgy</topic><topic>Protective coatings</topic><topic>Radiation</topic><topic>Silicon nitride</topic><topic>Solid solutions</topic><topic>Surface layers</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myslyvchenko, Oleksandr</creatorcontrib><creatorcontrib>Lytvyn, Roman</creatorcontrib><creatorcontrib>Grinkevich, Konstantin</creatorcontrib><creatorcontrib>Zgalat-Lozynskyy, Ostap</creatorcontrib><creatorcontrib>Bondar, Anatolii</creatorcontrib><creatorcontrib>Shyrokov, Oleksandr</creatorcontrib><creatorcontrib>Ivanchenko, Serhii</creatorcontrib><creatorcontrib>Bloschanevich, Oleksandr</creatorcontrib><creatorcontrib>Stegniy, Anatoliy</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myslyvchenko, Oleksandr</au><au>Lytvyn, Roman</au><au>Grinkevich, Konstantin</au><au>Zgalat-Lozynskyy, Ostap</au><au>Bondar, Anatolii</au><au>Shyrokov, Oleksandr</au><au>Ivanchenko, Serhii</au><au>Bloschanevich, Oleksandr</au><au>Stegniy, Anatoliy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>76</volume><issue>8</issue><spage>3960</spage><epage>3968</epage><pages>3960-3968</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>In the present work, the Ti 0.8 W 0.25 Cr 0.5 FeCo 1.75 Ni 3 AlB 0.6 (molar ratio) high-entropy alloy (HEA) has been obtained by arc melting. Its phase constituents are two BCC solid solutions, one FCC solid solution and boride with a W 2 CoB 2 -type crystal structure. The resulting ingot has been used to fabricate electrodes, employed for the electrospark deposition (ESD) of coatings at discharge energies of 0.52 J and 1.1 J. The microhardness of the deposited coatings is about 11 GPa, and their thickness is 25–30 and 30–35 μm at discharge energies of 0.52 and 1.1 J, respectively. The microstructure of the obtained coatings is more homogeneous than that of the cast alloys, and, according to the XRD data, they contain the BCC and FCC solid solutions, as well as a small amount of boride. It has been established that the laser treatment of the coatings facilitates the complete dissolution of boron in the solid solutions and leads to the formation of a heat-affected zone, whereas the hardness of the surface layer remains almost unchanged. The wear resistance of the as-deposited and laser-treated coatings has been investigated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-024-06552-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4903-6488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2024-08, Vol.76 (8), p.3960-3968
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_3102957684
source SpringerLink Journals
subjects Advanced Functional and Structural Thin Films and Coatings
Alloys
Arc deposition
Body centered cubic lattice
Boron
Casting alloys
Chemistry/Food Science
Coatings
Crystal structure
Discharge
Earth Sciences
Electric arc melting
Electric arcs
Electrodes
Engineering
Entropy
Environment
Face centered cubic lattice
Friction
Heat affected zone
Heat treatment
High entropy alloys
Ingot casting
Investigations
Lasers
Metallurgical constituents
Metals
Microhardness
Physics
Powder metallurgy
Protective coatings
Radiation
Silicon nitride
Solid solutions
Surface layers
Thickness
Titanium
Wear resistance
title Laser Treatment of Electrospark-Deposited Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6 High-Entropy Coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Treatment%20of%20Electrospark-Deposited%20Ti0.8W0.25Cr0.5FeCo1.75Ni3AlB0.6%20High-Entropy%20Coatings&rft.jtitle=JOM%20(1989)&rft.au=Myslyvchenko,%20Oleksandr&rft.date=2024-08-01&rft.volume=76&rft.issue=8&rft.spage=3960&rft.epage=3968&rft.pages=3960-3968&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-024-06552-z&rft_dat=%3Cproquest_cross%3E3102957684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102957684&rft_id=info:pmid/&rfr_iscdi=true