Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China
On 12 th August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the ca...
Gespeichert in:
Veröffentlicht in: | Journal of mountain science 2024-09, Vol.21 (9), p.2905-2917 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2917 |
---|---|
container_issue | 9 |
container_start_page | 2905 |
container_title | Journal of mountain science |
container_volume | 21 |
creator | Liu, Yinpeng Haider, Mumtaz Lawrence, David-darnor Li, Tonglu Shen, Wei Li, Ping |
description | On 12
th
August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the cause of the long run-out movement are always in arguments. In this paper, we conducted a detailed field investigation, laboratory tests, block theory analysis, and numerical simulation to investigate the failure and long run-out mechanisms of the landslide. The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers. Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130–140MPa and the dolomite shows a brittle failure mode. Due to the progressive downward erosion of the gully, the dolomite rock bridge at the slope toe became thinner. As the compression stress in the dolomite bridge increased to surpass its strength, the brittle failure of the bridge occurred. Then huge potential energy was released following the disintegration of the landslide, which led to the high acceleration of this rock landslide. The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide. |
doi_str_mv | 10.1007/s11629-024-8706-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102820629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102820629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-a8aa3178b84e3855058dcda4524c86603a9656a444aa218eaff61d27632026c13</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EEuXxA9gssWLwI3GcEVUUkIoYeKzWxXEal8QudjL03-NSJCYm3-Gcz9JB6ILRa0ZpdZMYk7wmlBdEVVSS-gDNWF0LQgVnh_mWFSdSMHmMTlJaUyqrWrEZ2i7A9VO0eLCmA-_SgME3OLlh6mF0weM2RNwHv8Jx8iRMIw4tHjuLDYyQxhg2nTM4BvOJ-2ym3jUWO_-DvOTFLWT1HTw0bhrwk_P2Cs875-EMHbXQJ3v--56it8Xd6_yBLJ_vH-e3S2JYrUYCCkCwSn2owgpVlrRUjWmgKHlhlJRUQC1LCUVRAHCmLLStZA2vpOCUS8PEKbrc725i-JpsGvU6TNHnL7VglCtOc7hMsT1lYkgp2lZvohsgbjWjeldY7wvrXFjvCuudw_dOyqxf2fi3_L_0Da4Rfls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102820629</pqid></control><display><type>article</type><title>Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Yinpeng ; Haider, Mumtaz ; Lawrence, David-darnor ; Li, Tonglu ; Shen, Wei ; Li, Ping</creator><creatorcontrib>Liu, Yinpeng ; Haider, Mumtaz ; Lawrence, David-darnor ; Li, Tonglu ; Shen, Wei ; Li, Ping</creatorcontrib><description>On 12
th
August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the cause of the long run-out movement are always in arguments. In this paper, we conducted a detailed field investigation, laboratory tests, block theory analysis, and numerical simulation to investigate the failure and long run-out mechanisms of the landslide. The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers. Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130–140MPa and the dolomite shows a brittle failure mode. Due to the progressive downward erosion of the gully, the dolomite rock bridge at the slope toe became thinner. As the compression stress in the dolomite bridge increased to surpass its strength, the brittle failure of the bridge occurred. Then huge potential energy was released following the disintegration of the landslide, which led to the high acceleration of this rock landslide. The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.</description><identifier>ISSN: 1672-6316</identifier><identifier>EISSN: 1993-0321</identifier><identifier>EISSN: 1008-2786</identifier><identifier>DOI: 10.1007/s11629-024-8706-9</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Block theory ; Bridge failure ; Brittle erosion ; Compression ; Compression tests ; Compressive strength ; Disintegration ; Dolomite ; Dolostone ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Ecology ; Embrittlement ; Environment ; Failure analysis ; Failure mechanisms ; Failure modes ; Field investigations ; Geography ; Gullies ; Gully erosion ; High acceleration ; Laboratory tests ; Land bridges ; Landslides ; Mathematical models ; Original Article ; Potential energy ; Rocks ; Sedimentary rocks ; Seismic activity ; Shale ; Simulation ; Three dimensional motion ; Vanadium</subject><ispartof>Journal of mountain science, 2024-09, Vol.21 (9), p.2905-2917</ispartof><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024</rights><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-a8aa3178b84e3855058dcda4524c86603a9656a444aa218eaff61d27632026c13</cites><orcidid>0009-0006-2506-0079 ; 0000-0001-6561-1871 ; 0000-0001-9427-5029 ; 0009-0002-0323-506X ; 0000-0002-6010-961X ; 0000-0002-3122-1901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11629-024-8706-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11629-024-8706-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Yinpeng</creatorcontrib><creatorcontrib>Haider, Mumtaz</creatorcontrib><creatorcontrib>Lawrence, David-darnor</creatorcontrib><creatorcontrib>Li, Tonglu</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><title>Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China</title><title>Journal of mountain science</title><addtitle>J. Mt. Sci</addtitle><description>On 12
th
August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the cause of the long run-out movement are always in arguments. In this paper, we conducted a detailed field investigation, laboratory tests, block theory analysis, and numerical simulation to investigate the failure and long run-out mechanisms of the landslide. The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers. Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130–140MPa and the dolomite shows a brittle failure mode. Due to the progressive downward erosion of the gully, the dolomite rock bridge at the slope toe became thinner. As the compression stress in the dolomite bridge increased to surpass its strength, the brittle failure of the bridge occurred. Then huge potential energy was released following the disintegration of the landslide, which led to the high acceleration of this rock landslide. The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.</description><subject>Block theory</subject><subject>Bridge failure</subject><subject>Brittle erosion</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Disintegration</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Ecology</subject><subject>Embrittlement</subject><subject>Environment</subject><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>Failure modes</subject><subject>Field investigations</subject><subject>Geography</subject><subject>Gullies</subject><subject>Gully erosion</subject><subject>High acceleration</subject><subject>Laboratory tests</subject><subject>Land bridges</subject><subject>Landslides</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Potential energy</subject><subject>Rocks</subject><subject>Sedimentary rocks</subject><subject>Seismic activity</subject><subject>Shale</subject><subject>Simulation</subject><subject>Three dimensional motion</subject><subject>Vanadium</subject><issn>1672-6316</issn><issn>1993-0321</issn><issn>1008-2786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EEuXxA9gssWLwI3GcEVUUkIoYeKzWxXEal8QudjL03-NSJCYm3-Gcz9JB6ILRa0ZpdZMYk7wmlBdEVVSS-gDNWF0LQgVnh_mWFSdSMHmMTlJaUyqrWrEZ2i7A9VO0eLCmA-_SgME3OLlh6mF0weM2RNwHv8Jx8iRMIw4tHjuLDYyQxhg2nTM4BvOJ-2ym3jUWO_-DvOTFLWT1HTw0bhrwk_P2Cs875-EMHbXQJ3v--56it8Xd6_yBLJ_vH-e3S2JYrUYCCkCwSn2owgpVlrRUjWmgKHlhlJRUQC1LCUVRAHCmLLStZA2vpOCUS8PEKbrc725i-JpsGvU6TNHnL7VglCtOc7hMsT1lYkgp2lZvohsgbjWjeldY7wvrXFjvCuudw_dOyqxf2fi3_L_0Da4Rfls</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Yinpeng</creator><creator>Haider, Mumtaz</creator><creator>Lawrence, David-darnor</creator><creator>Li, Tonglu</creator><creator>Shen, Wei</creator><creator>Li, Ping</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0009-0006-2506-0079</orcidid><orcidid>https://orcid.org/0000-0001-6561-1871</orcidid><orcidid>https://orcid.org/0000-0001-9427-5029</orcidid><orcidid>https://orcid.org/0009-0002-0323-506X</orcidid><orcidid>https://orcid.org/0000-0002-6010-961X</orcidid><orcidid>https://orcid.org/0000-0002-3122-1901</orcidid></search><sort><creationdate>20240901</creationdate><title>Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China</title><author>Liu, Yinpeng ; Haider, Mumtaz ; Lawrence, David-darnor ; Li, Tonglu ; Shen, Wei ; Li, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-a8aa3178b84e3855058dcda4524c86603a9656a444aa218eaff61d27632026c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Block theory</topic><topic>Bridge failure</topic><topic>Brittle erosion</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Disintegration</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Ecology</topic><topic>Embrittlement</topic><topic>Environment</topic><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>Failure modes</topic><topic>Field investigations</topic><topic>Geography</topic><topic>Gullies</topic><topic>Gully erosion</topic><topic>High acceleration</topic><topic>Laboratory tests</topic><topic>Land bridges</topic><topic>Landslides</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Potential energy</topic><topic>Rocks</topic><topic>Sedimentary rocks</topic><topic>Seismic activity</topic><topic>Shale</topic><topic>Simulation</topic><topic>Three dimensional motion</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yinpeng</creatorcontrib><creatorcontrib>Haider, Mumtaz</creatorcontrib><creatorcontrib>Lawrence, David-darnor</creatorcontrib><creatorcontrib>Li, Tonglu</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of mountain science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yinpeng</au><au>Haider, Mumtaz</au><au>Lawrence, David-darnor</au><au>Li, Tonglu</au><au>Shen, Wei</au><au>Li, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China</atitle><jtitle>Journal of mountain science</jtitle><stitle>J. Mt. Sci</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>21</volume><issue>9</issue><spage>2905</spage><epage>2917</epage><pages>2905-2917</pages><issn>1672-6316</issn><eissn>1993-0321</eissn><eissn>1008-2786</eissn><abstract>On 12
th
August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the cause of the long run-out movement are always in arguments. In this paper, we conducted a detailed field investigation, laboratory tests, block theory analysis, and numerical simulation to investigate the failure and long run-out mechanisms of the landslide. The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers. Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130–140MPa and the dolomite shows a brittle failure mode. Due to the progressive downward erosion of the gully, the dolomite rock bridge at the slope toe became thinner. As the compression stress in the dolomite bridge increased to surpass its strength, the brittle failure of the bridge occurred. Then huge potential energy was released following the disintegration of the landslide, which led to the high acceleration of this rock landslide. The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11629-024-8706-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0006-2506-0079</orcidid><orcidid>https://orcid.org/0000-0001-6561-1871</orcidid><orcidid>https://orcid.org/0000-0001-9427-5029</orcidid><orcidid>https://orcid.org/0009-0002-0323-506X</orcidid><orcidid>https://orcid.org/0000-0002-6010-961X</orcidid><orcidid>https://orcid.org/0000-0002-3122-1901</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-6316 |
ispartof | Journal of mountain science, 2024-09, Vol.21 (9), p.2905-2917 |
issn | 1672-6316 1993-0321 1008-2786 |
language | eng |
recordid | cdi_proquest_journals_3102820629 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Block theory Bridge failure Brittle erosion Compression Compression tests Compressive strength Disintegration Dolomite Dolostone Earth and Environmental Science Earth Sciences Earthquakes Ecology Embrittlement Environment Failure analysis Failure mechanisms Failure modes Field investigations Geography Gullies Gully erosion High acceleration Laboratory tests Land bridges Landslides Mathematical models Original Article Potential energy Rocks Sedimentary rocks Seismic activity Shale Simulation Three dimensional motion Vanadium |
title | Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20mechanism%20and%20simulation%20for%20long%20run-out%20of%20the%20catastrophic%20rock%20landslide%20in%20the%20Shanyang%20Vanadium%20Mine,%20China&rft.jtitle=Journal%20of%20mountain%20science&rft.au=Liu,%20Yinpeng&rft.date=2024-09-01&rft.volume=21&rft.issue=9&rft.spage=2905&rft.epage=2917&rft.pages=2905-2917&rft.issn=1672-6316&rft.eissn=1993-0321&rft_id=info:doi/10.1007/s11629-024-8706-9&rft_dat=%3Cproquest_cross%3E3102820629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102820629&rft_id=info:pmid/&rfr_iscdi=true |