Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China

On 12 th August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mountain science 2024-09, Vol.21 (9), p.2905-2917
Hauptverfasser: Liu, Yinpeng, Haider, Mumtaz, Lawrence, David-darnor, Li, Tonglu, Shen, Wei, Li, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2917
container_issue 9
container_start_page 2905
container_title Journal of mountain science
container_volume 21
creator Liu, Yinpeng
Haider, Mumtaz
Lawrence, David-darnor
Li, Tonglu
Shen, Wei
Li, Ping
description On 12 th August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the cause of the long run-out movement are always in arguments. In this paper, we conducted a detailed field investigation, laboratory tests, block theory analysis, and numerical simulation to investigate the failure and long run-out mechanisms of the landslide. The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers. Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130–140MPa and the dolomite shows a brittle failure mode. Due to the progressive downward erosion of the gully, the dolomite rock bridge at the slope toe became thinner. As the compression stress in the dolomite bridge increased to surpass its strength, the brittle failure of the bridge occurred. Then huge potential energy was released following the disintegration of the landslide, which led to the high acceleration of this rock landslide. The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.
doi_str_mv 10.1007/s11629-024-8706-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102820629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102820629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-a8aa3178b84e3855058dcda4524c86603a9656a444aa218eaff61d27632026c13</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EEuXxA9gssWLwI3GcEVUUkIoYeKzWxXEal8QudjL03-NSJCYm3-Gcz9JB6ILRa0ZpdZMYk7wmlBdEVVSS-gDNWF0LQgVnh_mWFSdSMHmMTlJaUyqrWrEZ2i7A9VO0eLCmA-_SgME3OLlh6mF0weM2RNwHv8Jx8iRMIw4tHjuLDYyQxhg2nTM4BvOJ-2ym3jUWO_-DvOTFLWT1HTw0bhrwk_P2Cs875-EMHbXQJ3v--56it8Xd6_yBLJ_vH-e3S2JYrUYCCkCwSn2owgpVlrRUjWmgKHlhlJRUQC1LCUVRAHCmLLStZA2vpOCUS8PEKbrc725i-JpsGvU6TNHnL7VglCtOc7hMsT1lYkgp2lZvohsgbjWjeldY7wvrXFjvCuudw_dOyqxf2fi3_L_0Da4Rfls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102820629</pqid></control><display><type>article</type><title>Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Yinpeng ; Haider, Mumtaz ; Lawrence, David-darnor ; Li, Tonglu ; Shen, Wei ; Li, Ping</creator><creatorcontrib>Liu, Yinpeng ; Haider, Mumtaz ; Lawrence, David-darnor ; Li, Tonglu ; Shen, Wei ; Li, Ping</creatorcontrib><description>On 12 th August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the cause of the long run-out movement are always in arguments. In this paper, we conducted a detailed field investigation, laboratory tests, block theory analysis, and numerical simulation to investigate the failure and long run-out mechanisms of the landslide. The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers. Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130–140MPa and the dolomite shows a brittle failure mode. Due to the progressive downward erosion of the gully, the dolomite rock bridge at the slope toe became thinner. As the compression stress in the dolomite bridge increased to surpass its strength, the brittle failure of the bridge occurred. Then huge potential energy was released following the disintegration of the landslide, which led to the high acceleration of this rock landslide. The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.</description><identifier>ISSN: 1672-6316</identifier><identifier>EISSN: 1993-0321</identifier><identifier>EISSN: 1008-2786</identifier><identifier>DOI: 10.1007/s11629-024-8706-9</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Block theory ; Bridge failure ; Brittle erosion ; Compression ; Compression tests ; Compressive strength ; Disintegration ; Dolomite ; Dolostone ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Ecology ; Embrittlement ; Environment ; Failure analysis ; Failure mechanisms ; Failure modes ; Field investigations ; Geography ; Gullies ; Gully erosion ; High acceleration ; Laboratory tests ; Land bridges ; Landslides ; Mathematical models ; Original Article ; Potential energy ; Rocks ; Sedimentary rocks ; Seismic activity ; Shale ; Simulation ; Three dimensional motion ; Vanadium</subject><ispartof>Journal of mountain science, 2024-09, Vol.21 (9), p.2905-2917</ispartof><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024</rights><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-a8aa3178b84e3855058dcda4524c86603a9656a444aa218eaff61d27632026c13</cites><orcidid>0009-0006-2506-0079 ; 0000-0001-6561-1871 ; 0000-0001-9427-5029 ; 0009-0002-0323-506X ; 0000-0002-6010-961X ; 0000-0002-3122-1901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11629-024-8706-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11629-024-8706-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Yinpeng</creatorcontrib><creatorcontrib>Haider, Mumtaz</creatorcontrib><creatorcontrib>Lawrence, David-darnor</creatorcontrib><creatorcontrib>Li, Tonglu</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><title>Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China</title><title>Journal of mountain science</title><addtitle>J. Mt. Sci</addtitle><description>On 12 th August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the cause of the long run-out movement are always in arguments. In this paper, we conducted a detailed field investigation, laboratory tests, block theory analysis, and numerical simulation to investigate the failure and long run-out mechanisms of the landslide. The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers. Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130–140MPa and the dolomite shows a brittle failure mode. Due to the progressive downward erosion of the gully, the dolomite rock bridge at the slope toe became thinner. As the compression stress in the dolomite bridge increased to surpass its strength, the brittle failure of the bridge occurred. Then huge potential energy was released following the disintegration of the landslide, which led to the high acceleration of this rock landslide. The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.</description><subject>Block theory</subject><subject>Bridge failure</subject><subject>Brittle erosion</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Disintegration</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Ecology</subject><subject>Embrittlement</subject><subject>Environment</subject><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>Failure modes</subject><subject>Field investigations</subject><subject>Geography</subject><subject>Gullies</subject><subject>Gully erosion</subject><subject>High acceleration</subject><subject>Laboratory tests</subject><subject>Land bridges</subject><subject>Landslides</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Potential energy</subject><subject>Rocks</subject><subject>Sedimentary rocks</subject><subject>Seismic activity</subject><subject>Shale</subject><subject>Simulation</subject><subject>Three dimensional motion</subject><subject>Vanadium</subject><issn>1672-6316</issn><issn>1993-0321</issn><issn>1008-2786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EEuXxA9gssWLwI3GcEVUUkIoYeKzWxXEal8QudjL03-NSJCYm3-Gcz9JB6ILRa0ZpdZMYk7wmlBdEVVSS-gDNWF0LQgVnh_mWFSdSMHmMTlJaUyqrWrEZ2i7A9VO0eLCmA-_SgME3OLlh6mF0weM2RNwHv8Jx8iRMIw4tHjuLDYyQxhg2nTM4BvOJ-2ym3jUWO_-DvOTFLWT1HTw0bhrwk_P2Cs875-EMHbXQJ3v--56it8Xd6_yBLJ_vH-e3S2JYrUYCCkCwSn2owgpVlrRUjWmgKHlhlJRUQC1LCUVRAHCmLLStZA2vpOCUS8PEKbrc725i-JpsGvU6TNHnL7VglCtOc7hMsT1lYkgp2lZvohsgbjWjeldY7wvrXFjvCuudw_dOyqxf2fi3_L_0Da4Rfls</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Yinpeng</creator><creator>Haider, Mumtaz</creator><creator>Lawrence, David-darnor</creator><creator>Li, Tonglu</creator><creator>Shen, Wei</creator><creator>Li, Ping</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0009-0006-2506-0079</orcidid><orcidid>https://orcid.org/0000-0001-6561-1871</orcidid><orcidid>https://orcid.org/0000-0001-9427-5029</orcidid><orcidid>https://orcid.org/0009-0002-0323-506X</orcidid><orcidid>https://orcid.org/0000-0002-6010-961X</orcidid><orcidid>https://orcid.org/0000-0002-3122-1901</orcidid></search><sort><creationdate>20240901</creationdate><title>Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China</title><author>Liu, Yinpeng ; Haider, Mumtaz ; Lawrence, David-darnor ; Li, Tonglu ; Shen, Wei ; Li, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-a8aa3178b84e3855058dcda4524c86603a9656a444aa218eaff61d27632026c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Block theory</topic><topic>Bridge failure</topic><topic>Brittle erosion</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Disintegration</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Ecology</topic><topic>Embrittlement</topic><topic>Environment</topic><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>Failure modes</topic><topic>Field investigations</topic><topic>Geography</topic><topic>Gullies</topic><topic>Gully erosion</topic><topic>High acceleration</topic><topic>Laboratory tests</topic><topic>Land bridges</topic><topic>Landslides</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Potential energy</topic><topic>Rocks</topic><topic>Sedimentary rocks</topic><topic>Seismic activity</topic><topic>Shale</topic><topic>Simulation</topic><topic>Three dimensional motion</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yinpeng</creatorcontrib><creatorcontrib>Haider, Mumtaz</creatorcontrib><creatorcontrib>Lawrence, David-darnor</creatorcontrib><creatorcontrib>Li, Tonglu</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of mountain science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yinpeng</au><au>Haider, Mumtaz</au><au>Lawrence, David-darnor</au><au>Li, Tonglu</au><au>Shen, Wei</au><au>Li, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China</atitle><jtitle>Journal of mountain science</jtitle><stitle>J. Mt. Sci</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>21</volume><issue>9</issue><spage>2905</spage><epage>2917</epage><pages>2905-2917</pages><issn>1672-6316</issn><eissn>1993-0321</eissn><eissn>1008-2786</eissn><abstract>On 12 th August 2015, a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province, China, which claimed the lives of 65 miners. No heavy rainfalls, earthquakes, and mining blasts were recorded before the incident. Therefore, the failure mechanism and the cause of the long run-out movement are always in arguments. In this paper, we conducted a detailed field investigation, laboratory tests, block theory analysis, and numerical simulation to investigate the failure and long run-out mechanisms of the landslide. The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers. Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130–140MPa and the dolomite shows a brittle failure mode. Due to the progressive downward erosion of the gully, the dolomite rock bridge at the slope toe became thinner. As the compression stress in the dolomite bridge increased to surpass its strength, the brittle failure of the bridge occurred. Then huge potential energy was released following the disintegration of the landslide, which led to the high acceleration of this rock landslide. The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11629-024-8706-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0006-2506-0079</orcidid><orcidid>https://orcid.org/0000-0001-6561-1871</orcidid><orcidid>https://orcid.org/0000-0001-9427-5029</orcidid><orcidid>https://orcid.org/0009-0002-0323-506X</orcidid><orcidid>https://orcid.org/0000-0002-6010-961X</orcidid><orcidid>https://orcid.org/0000-0002-3122-1901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1672-6316
ispartof Journal of mountain science, 2024-09, Vol.21 (9), p.2905-2917
issn 1672-6316
1993-0321
1008-2786
language eng
recordid cdi_proquest_journals_3102820629
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Block theory
Bridge failure
Brittle erosion
Compression
Compression tests
Compressive strength
Disintegration
Dolomite
Dolostone
Earth and Environmental Science
Earth Sciences
Earthquakes
Ecology
Embrittlement
Environment
Failure analysis
Failure mechanisms
Failure modes
Field investigations
Geography
Gullies
Gully erosion
High acceleration
Laboratory tests
Land bridges
Landslides
Mathematical models
Original Article
Potential energy
Rocks
Sedimentary rocks
Seismic activity
Shale
Simulation
Three dimensional motion
Vanadium
title Failure mechanism and simulation for long run-out of the catastrophic rock landslide in the Shanyang Vanadium Mine, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20mechanism%20and%20simulation%20for%20long%20run-out%20of%20the%20catastrophic%20rock%20landslide%20in%20the%20Shanyang%20Vanadium%20Mine,%20China&rft.jtitle=Journal%20of%20mountain%20science&rft.au=Liu,%20Yinpeng&rft.date=2024-09-01&rft.volume=21&rft.issue=9&rft.spage=2905&rft.epage=2917&rft.pages=2905-2917&rft.issn=1672-6316&rft.eissn=1993-0321&rft_id=info:doi/10.1007/s11629-024-8706-9&rft_dat=%3Cproquest_cross%3E3102820629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102820629&rft_id=info:pmid/&rfr_iscdi=true