Machine-learning to predict anharmonic frequencies: a study of models and transferability

With more and more accurate electronic structure methods at hand, the inclusion of anharmonic effects in the post-processing of such data towards thermochemical properties is the next step. In this context, the description of anharmonicity has been an important topic of physical chemistry and chemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-09, Vol.26 (35), p.23495-2352
Hauptverfasser: Khanifaev, Jamoliddin, Schrader, Tim, Perlt, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2352
container_issue 35
container_start_page 23495
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Khanifaev, Jamoliddin
Schrader, Tim
Perlt, Eva
description With more and more accurate electronic structure methods at hand, the inclusion of anharmonic effects in the post-processing of such data towards thermochemical properties is the next step. In this context, the description of anharmonicity has been an important topic of physical chemistry and chemical physics for a long time. In this study, anharmonic frequencies of various hydrogen-halides and halogenated hydrocarbon molecular clusters are calculated using harmonic as well as explicitly anharmonic methods, i.e. , normal mode analysis and vibrational self-consistent field. Simple harmonic model based descriptors were used to predict anharmonic frequencies via multilinear regression and gradient boosting regression. Gradient boosting regression is capable of predicting reliable anharmonic data and even the simple multilinear regression model yields reasonable predictions that can account for mode-to-mode couplings. Moreover, the transferability to unseen chemical systems is assessed and it is confirmed that the machine-learned models can be applied to larger, unseen molecules. A machine learning algorithm predicts vibrational frequencies that are much closer to VSCF-calculated anharmonic frequencies compared to the harmonic approximation.
doi_str_mv 10.1039/d4cp01789g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102780111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099863508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-c16876cfc5fe78744bb9cab3283c89cfbc805ad4832f5cd6dea176abf76d2ac23</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgirt-XLwrAS8iVPPRpqk3WXUVFD3owVNJJ8luljZdk_aw_97q6gqeZmAehuEdhI4ouaCEF5c6hSWhuSxmW2hMU8GTgsh0e9PnYoT2YlwQQmhG-S4a8YIxRlI2Ru9PCubOm6Q2KnjnZ7hr8TIY7aDDys9VaFrvANtgPnrjwZl4hRWOXa9XuLW4abWp4yA17oLy0ZqgKle7bnWAdqyqozn8qfvo7e72dXKfPD5PHybXjwkwJroEqJC5AAuZNbnM07SqClAVZ5KDLMBWIEmmdCo5sxlooY2iuVCVzYVmChjfR2frvcvQDifGrmxcBFPXypu2jyUnRSEFz4gc6Ok_umj74IfrSk4JyyWhlA7qfK0gtDEGY8tlcI0Kq5KS8ivw8iadvHwHPh3wyc_KvmqM3tDfhAdwvAYhwmb69zH-CW01hfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102780111</pqid></control><display><type>article</type><title>Machine-learning to predict anharmonic frequencies: a study of models and transferability</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Khanifaev, Jamoliddin ; Schrader, Tim ; Perlt, Eva</creator><creatorcontrib>Khanifaev, Jamoliddin ; Schrader, Tim ; Perlt, Eva</creatorcontrib><description>With more and more accurate electronic structure methods at hand, the inclusion of anharmonic effects in the post-processing of such data towards thermochemical properties is the next step. In this context, the description of anharmonicity has been an important topic of physical chemistry and chemical physics for a long time. In this study, anharmonic frequencies of various hydrogen-halides and halogenated hydrocarbon molecular clusters are calculated using harmonic as well as explicitly anharmonic methods, i.e. , normal mode analysis and vibrational self-consistent field. Simple harmonic model based descriptors were used to predict anharmonic frequencies via multilinear regression and gradient boosting regression. Gradient boosting regression is capable of predicting reliable anharmonic data and even the simple multilinear regression model yields reasonable predictions that can account for mode-to-mode couplings. Moreover, the transferability to unseen chemical systems is assessed and it is confirmed that the machine-learned models can be applied to larger, unseen molecules. A machine learning algorithm predicts vibrational frequencies that are much closer to VSCF-calculated anharmonic frequencies compared to the harmonic approximation.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp01789g</identifier><identifier>PMID: 39222042</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anharmonicity ; Cluster analysis ; Couplings ; Electronic structure ; Halides ; Machine learning ; Molecular clusters ; Physical chemistry ; Predictions ; Regression models ; Self consistent fields ; Thermochemical properties</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-09, Vol.26 (35), p.23495-2352</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-c16876cfc5fe78744bb9cab3283c89cfbc805ad4832f5cd6dea176abf76d2ac23</cites><orcidid>0000-0001-9020-6464 ; 0000-0002-4670-0542 ; 0000-0002-5323-5589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39222042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanifaev, Jamoliddin</creatorcontrib><creatorcontrib>Schrader, Tim</creatorcontrib><creatorcontrib>Perlt, Eva</creatorcontrib><title>Machine-learning to predict anharmonic frequencies: a study of models and transferability</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>With more and more accurate electronic structure methods at hand, the inclusion of anharmonic effects in the post-processing of such data towards thermochemical properties is the next step. In this context, the description of anharmonicity has been an important topic of physical chemistry and chemical physics for a long time. In this study, anharmonic frequencies of various hydrogen-halides and halogenated hydrocarbon molecular clusters are calculated using harmonic as well as explicitly anharmonic methods, i.e. , normal mode analysis and vibrational self-consistent field. Simple harmonic model based descriptors were used to predict anharmonic frequencies via multilinear regression and gradient boosting regression. Gradient boosting regression is capable of predicting reliable anharmonic data and even the simple multilinear regression model yields reasonable predictions that can account for mode-to-mode couplings. Moreover, the transferability to unseen chemical systems is assessed and it is confirmed that the machine-learned models can be applied to larger, unseen molecules. A machine learning algorithm predicts vibrational frequencies that are much closer to VSCF-calculated anharmonic frequencies compared to the harmonic approximation.</description><subject>Anharmonicity</subject><subject>Cluster analysis</subject><subject>Couplings</subject><subject>Electronic structure</subject><subject>Halides</subject><subject>Machine learning</subject><subject>Molecular clusters</subject><subject>Physical chemistry</subject><subject>Predictions</subject><subject>Regression models</subject><subject>Self consistent fields</subject><subject>Thermochemical properties</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgirt-XLwrAS8iVPPRpqk3WXUVFD3owVNJJ8luljZdk_aw_97q6gqeZmAehuEdhI4ouaCEF5c6hSWhuSxmW2hMU8GTgsh0e9PnYoT2YlwQQmhG-S4a8YIxRlI2Ru9PCubOm6Q2KnjnZ7hr8TIY7aDDys9VaFrvANtgPnrjwZl4hRWOXa9XuLW4abWp4yA17oLy0ZqgKle7bnWAdqyqozn8qfvo7e72dXKfPD5PHybXjwkwJroEqJC5AAuZNbnM07SqClAVZ5KDLMBWIEmmdCo5sxlooY2iuVCVzYVmChjfR2frvcvQDifGrmxcBFPXypu2jyUnRSEFz4gc6Ok_umj74IfrSk4JyyWhlA7qfK0gtDEGY8tlcI0Kq5KS8ivw8iadvHwHPh3wyc_KvmqM3tDfhAdwvAYhwmb69zH-CW01hfQ</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Khanifaev, Jamoliddin</creator><creator>Schrader, Tim</creator><creator>Perlt, Eva</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9020-6464</orcidid><orcidid>https://orcid.org/0000-0002-4670-0542</orcidid><orcidid>https://orcid.org/0000-0002-5323-5589</orcidid></search><sort><creationdate>20240911</creationdate><title>Machine-learning to predict anharmonic frequencies: a study of models and transferability</title><author>Khanifaev, Jamoliddin ; Schrader, Tim ; Perlt, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-c16876cfc5fe78744bb9cab3283c89cfbc805ad4832f5cd6dea176abf76d2ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anharmonicity</topic><topic>Cluster analysis</topic><topic>Couplings</topic><topic>Electronic structure</topic><topic>Halides</topic><topic>Machine learning</topic><topic>Molecular clusters</topic><topic>Physical chemistry</topic><topic>Predictions</topic><topic>Regression models</topic><topic>Self consistent fields</topic><topic>Thermochemical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanifaev, Jamoliddin</creatorcontrib><creatorcontrib>Schrader, Tim</creatorcontrib><creatorcontrib>Perlt, Eva</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanifaev, Jamoliddin</au><au>Schrader, Tim</au><au>Perlt, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-learning to predict anharmonic frequencies: a study of models and transferability</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-09-11</date><risdate>2024</risdate><volume>26</volume><issue>35</issue><spage>23495</spage><epage>2352</epage><pages>23495-2352</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>With more and more accurate electronic structure methods at hand, the inclusion of anharmonic effects in the post-processing of such data towards thermochemical properties is the next step. In this context, the description of anharmonicity has been an important topic of physical chemistry and chemical physics for a long time. In this study, anharmonic frequencies of various hydrogen-halides and halogenated hydrocarbon molecular clusters are calculated using harmonic as well as explicitly anharmonic methods, i.e. , normal mode analysis and vibrational self-consistent field. Simple harmonic model based descriptors were used to predict anharmonic frequencies via multilinear regression and gradient boosting regression. Gradient boosting regression is capable of predicting reliable anharmonic data and even the simple multilinear regression model yields reasonable predictions that can account for mode-to-mode couplings. Moreover, the transferability to unseen chemical systems is assessed and it is confirmed that the machine-learned models can be applied to larger, unseen molecules. A machine learning algorithm predicts vibrational frequencies that are much closer to VSCF-calculated anharmonic frequencies compared to the harmonic approximation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39222042</pmid><doi>10.1039/d4cp01789g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9020-6464</orcidid><orcidid>https://orcid.org/0000-0002-4670-0542</orcidid><orcidid>https://orcid.org/0000-0002-5323-5589</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-09, Vol.26 (35), p.23495-2352
issn 1463-9076
1463-9084
1463-9084
language eng
recordid cdi_proquest_journals_3102780111
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Anharmonicity
Cluster analysis
Couplings
Electronic structure
Halides
Machine learning
Molecular clusters
Physical chemistry
Predictions
Regression models
Self consistent fields
Thermochemical properties
title Machine-learning to predict anharmonic frequencies: a study of models and transferability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-learning%20to%20predict%20anharmonic%20frequencies:%20a%20study%20of%20models%20and%20transferability&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Khanifaev,%20Jamoliddin&rft.date=2024-09-11&rft.volume=26&rft.issue=35&rft.spage=23495&rft.epage=2352&rft.pages=23495-2352&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp01789g&rft_dat=%3Cproquest_cross%3E3099863508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102780111&rft_id=info:pmid/39222042&rfr_iscdi=true