Charge correlation, doublon-holon binding and screening in the doped Hubbard model
Electronic correlations arise from the competition between the electrons' kinetic and Coulomb interaction energy and give rise to a rich phase diagram and many emergent quasiparticles. The binding of doubly-occupied and empty sites into a doublon-holon exciton is an example of this in the Hubba...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kapetanović, Edin Guglielmo Nicola Gigante Schüler, Malte Wehling, Tim O Erik van Loon |
description | Electronic correlations arise from the competition between the electrons' kinetic and Coulomb interaction energy and give rise to a rich phase diagram and many emergent quasiparticles. The binding of doubly-occupied and empty sites into a doublon-holon exciton is an example of this in the Hubbard model. Unlike traditional excitons in semiconductors, in the Hubbard model it is the kinetic energy which provides the binding energy. Upon doping, we find the emergence of exciton complexes, such as a holon-doublon-holon trion. The appearance of these low-lying collective excitations make screening more effective in the doped system. As a result, Hubbard-based modelling of correlated materials should use different values of \(U\) for the doped system and the insulating parent compound, which we illustrate using the cuprates as an example. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3102582977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102582977</sourcerecordid><originalsourceid>FETCH-proquest_journals_31025829773</originalsourceid><addsrcrecordid>eNqNilELgjAURkcQJOV_uNBrwtwy7VkKn6P3mO6mk3Vnm_v_GfQDejkfh--sWCKkzLPqKMSGpSGMnHNxKkVRyITd6kH5HqFz3qNVs3F0AO1iax1lg1sIrSFtqAdFGkLnEelrhmAecEkn1NDEtlVew8tptDu2fiobMP3tlu2vl3vdZJN374hhfowuelquh8y5KCpxLkv5X_UB3AA_gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102582977</pqid></control><display><type>article</type><title>Charge correlation, doublon-holon binding and screening in the doped Hubbard model</title><source>Free E- Journals</source><creator>Kapetanović, Edin ; Guglielmo Nicola Gigante ; Schüler, Malte ; Wehling, Tim O ; Erik van Loon</creator><creatorcontrib>Kapetanović, Edin ; Guglielmo Nicola Gigante ; Schüler, Malte ; Wehling, Tim O ; Erik van Loon</creatorcontrib><description>Electronic correlations arise from the competition between the electrons' kinetic and Coulomb interaction energy and give rise to a rich phase diagram and many emergent quasiparticles. The binding of doubly-occupied and empty sites into a doublon-holon exciton is an example of this in the Hubbard model. Unlike traditional excitons in semiconductors, in the Hubbard model it is the kinetic energy which provides the binding energy. Upon doping, we find the emergence of exciton complexes, such as a holon-doublon-holon trion. The appearance of these low-lying collective excitations make screening more effective in the doped system. As a result, Hubbard-based modelling of correlated materials should use different values of \(U\) for the doped system and the insulating parent compound, which we illustrate using the cuprates as an example.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binding energy ; Correlation ; Cuprates ; Elementary excitations ; Excitons ; Insulation ; Kinetic energy ; Phase diagrams ; Screening</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kapetanović, Edin</creatorcontrib><creatorcontrib>Guglielmo Nicola Gigante</creatorcontrib><creatorcontrib>Schüler, Malte</creatorcontrib><creatorcontrib>Wehling, Tim O</creatorcontrib><creatorcontrib>Erik van Loon</creatorcontrib><title>Charge correlation, doublon-holon binding and screening in the doped Hubbard model</title><title>arXiv.org</title><description>Electronic correlations arise from the competition between the electrons' kinetic and Coulomb interaction energy and give rise to a rich phase diagram and many emergent quasiparticles. The binding of doubly-occupied and empty sites into a doublon-holon exciton is an example of this in the Hubbard model. Unlike traditional excitons in semiconductors, in the Hubbard model it is the kinetic energy which provides the binding energy. Upon doping, we find the emergence of exciton complexes, such as a holon-doublon-holon trion. The appearance of these low-lying collective excitations make screening more effective in the doped system. As a result, Hubbard-based modelling of correlated materials should use different values of \(U\) for the doped system and the insulating parent compound, which we illustrate using the cuprates as an example.</description><subject>Binding energy</subject><subject>Correlation</subject><subject>Cuprates</subject><subject>Elementary excitations</subject><subject>Excitons</subject><subject>Insulation</subject><subject>Kinetic energy</subject><subject>Phase diagrams</subject><subject>Screening</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNilELgjAURkcQJOV_uNBrwtwy7VkKn6P3mO6mk3Vnm_v_GfQDejkfh--sWCKkzLPqKMSGpSGMnHNxKkVRyITd6kH5HqFz3qNVs3F0AO1iax1lg1sIrSFtqAdFGkLnEelrhmAecEkn1NDEtlVew8tptDu2fiobMP3tlu2vl3vdZJN374hhfowuelquh8y5KCpxLkv5X_UB3AA_gA</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Kapetanović, Edin</creator><creator>Guglielmo Nicola Gigante</creator><creator>Schüler, Malte</creator><creator>Wehling, Tim O</creator><creator>Erik van Loon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240909</creationdate><title>Charge correlation, doublon-holon binding and screening in the doped Hubbard model</title><author>Kapetanović, Edin ; Guglielmo Nicola Gigante ; Schüler, Malte ; Wehling, Tim O ; Erik van Loon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31025829773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding energy</topic><topic>Correlation</topic><topic>Cuprates</topic><topic>Elementary excitations</topic><topic>Excitons</topic><topic>Insulation</topic><topic>Kinetic energy</topic><topic>Phase diagrams</topic><topic>Screening</topic><toplevel>online_resources</toplevel><creatorcontrib>Kapetanović, Edin</creatorcontrib><creatorcontrib>Guglielmo Nicola Gigante</creatorcontrib><creatorcontrib>Schüler, Malte</creatorcontrib><creatorcontrib>Wehling, Tim O</creatorcontrib><creatorcontrib>Erik van Loon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapetanović, Edin</au><au>Guglielmo Nicola Gigante</au><au>Schüler, Malte</au><au>Wehling, Tim O</au><au>Erik van Loon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Charge correlation, doublon-holon binding and screening in the doped Hubbard model</atitle><jtitle>arXiv.org</jtitle><date>2024-09-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Electronic correlations arise from the competition between the electrons' kinetic and Coulomb interaction energy and give rise to a rich phase diagram and many emergent quasiparticles. The binding of doubly-occupied and empty sites into a doublon-holon exciton is an example of this in the Hubbard model. Unlike traditional excitons in semiconductors, in the Hubbard model it is the kinetic energy which provides the binding energy. Upon doping, we find the emergence of exciton complexes, such as a holon-doublon-holon trion. The appearance of these low-lying collective excitations make screening more effective in the doped system. As a result, Hubbard-based modelling of correlated materials should use different values of \(U\) for the doped system and the insulating parent compound, which we illustrate using the cuprates as an example.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3102582977 |
source | Free E- Journals |
subjects | Binding energy Correlation Cuprates Elementary excitations Excitons Insulation Kinetic energy Phase diagrams Screening |
title | Charge correlation, doublon-holon binding and screening in the doped Hubbard model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Charge%20correlation,%20doublon-holon%20binding%20and%20screening%20in%20the%20doped%20Hubbard%20model&rft.jtitle=arXiv.org&rft.au=Kapetanovi%C4%87,%20Edin&rft.date=2024-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3102582977%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102582977&rft_id=info:pmid/&rfr_iscdi=true |