Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot

Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Mi, Jonathan, Tong, Wenzhe, Ma, Yilin, Huang, Xiaonan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mi, Jonathan
Tong, Wenzhe
Ma, Yilin
Huang, Xiaonan
description Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation (
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3102579994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102579994</sourcerecordid><originalsourceid>FETCH-proquest_journals_31025799943</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5Dge6FuammZehRbdWdCvTjjIRVztb0NtX0AN09V_834wFQso42iZCLFhINHDOxSYTaSoDVpVIup_AdKDgqqxWzYhwdrrrJiSCyivSUakttg5Kq58IxZdEu9Z55fAGF5wIe6vdC06mMW7F5p0aCcNfl2x92F-KY3S35uGRXD0Yb6fPqmXMRZrleZ7I_9QbNnQ-qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102579994</pqid></control><display><type>article</type><title>Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot</title><source>Free E- Journals</source><creator>Mi, Jonathan ; Tong, Wenzhe ; Ma, Yilin ; Huang, Xiaonan</creator><creatorcontrib>Mi, Jonathan ; Tong, Wenzhe ; Ma, Yilin ; Huang, Xiaonan</creatorcontrib><description>Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation (&lt;1% error relative to bar length) and variable stiffness control of the cable actuator up to 7 times the minimum stiffness for self support. The presented tensegrity robot serves as a platform for future advancements in autonomous operation and open-source module design.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Cables ; Formability ; Robot control ; Robots ; State estimation ; Stiffness ; Tensegrity ; Torque sensors (robotics)</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mi, Jonathan</creatorcontrib><creatorcontrib>Tong, Wenzhe</creatorcontrib><creatorcontrib>Ma, Yilin</creatorcontrib><creatorcontrib>Huang, Xiaonan</creatorcontrib><title>Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot</title><title>arXiv.org</title><description>Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation (&lt;1% error relative to bar length) and variable stiffness control of the cable actuator up to 7 times the minimum stiffness for self support. The presented tensegrity robot serves as a platform for future advancements in autonomous operation and open-source module design.</description><subject>Actuators</subject><subject>Cables</subject><subject>Formability</subject><subject>Robot control</subject><subject>Robots</subject><subject>State estimation</subject><subject>Stiffness</subject><subject>Tensegrity</subject><subject>Torque sensors (robotics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNytEKgjAUgOERBEn5Dge6FuammZehRbdWdCvTjjIRVztb0NtX0AN09V_834wFQso42iZCLFhINHDOxSYTaSoDVpVIup_AdKDgqqxWzYhwdrrrJiSCyivSUakttg5Kq58IxZdEu9Z55fAGF5wIe6vdC06mMW7F5p0aCcNfl2x92F-KY3S35uGRXD0Yb6fPqmXMRZrleZ7I_9QbNnQ-qw</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Mi, Jonathan</creator><creator>Tong, Wenzhe</creator><creator>Ma, Yilin</creator><creator>Huang, Xiaonan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240909</creationdate><title>Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot</title><author>Mi, Jonathan ; Tong, Wenzhe ; Ma, Yilin ; Huang, Xiaonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31025799943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Cables</topic><topic>Formability</topic><topic>Robot control</topic><topic>Robots</topic><topic>State estimation</topic><topic>Stiffness</topic><topic>Tensegrity</topic><topic>Torque sensors (robotics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mi, Jonathan</creatorcontrib><creatorcontrib>Tong, Wenzhe</creatorcontrib><creatorcontrib>Ma, Yilin</creatorcontrib><creatorcontrib>Huang, Xiaonan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Jonathan</au><au>Tong, Wenzhe</au><au>Ma, Yilin</au><au>Huang, Xiaonan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot</atitle><jtitle>arXiv.org</jtitle><date>2024-09-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation (&lt;1% error relative to bar length) and variable stiffness control of the cable actuator up to 7 times the minimum stiffness for self support. The presented tensegrity robot serves as a platform for future advancements in autonomous operation and open-source module design.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3102579994
source Free E- Journals
subjects Actuators
Cables
Formability
Robot control
Robots
State estimation
Stiffness
Tensegrity
Torque sensors (robotics)
title Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Design%20of%20a%20Variable%20Stiffness%20Quasi-Direct%20Drive%20Cable-Actuated%20Tensegrity%20Robot&rft.jtitle=arXiv.org&rft.au=Mi,%20Jonathan&rft.date=2024-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3102579994%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102579994&rft_id=info:pmid/&rfr_iscdi=true