Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot
Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot fea...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mi, Jonathan Tong, Wenzhe Ma, Yilin Huang, Xiaonan |
description | Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation ( |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3102579994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102579994</sourcerecordid><originalsourceid>FETCH-proquest_journals_31025799943</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5Dge6FuammZehRbdWdCvTjjIRVztb0NtX0AN09V_834wFQso42iZCLFhINHDOxSYTaSoDVpVIup_AdKDgqqxWzYhwdrrrJiSCyivSUakttg5Kq58IxZdEu9Z55fAGF5wIe6vdC06mMW7F5p0aCcNfl2x92F-KY3S35uGRXD0Yb6fPqmXMRZrleZ7I_9QbNnQ-qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102579994</pqid></control><display><type>article</type><title>Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot</title><source>Free E- Journals</source><creator>Mi, Jonathan ; Tong, Wenzhe ; Ma, Yilin ; Huang, Xiaonan</creator><creatorcontrib>Mi, Jonathan ; Tong, Wenzhe ; Ma, Yilin ; Huang, Xiaonan</creatorcontrib><description>Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation (<1% error relative to bar length) and variable stiffness control of the cable actuator up to 7 times the minimum stiffness for self support. The presented tensegrity robot serves as a platform for future advancements in autonomous operation and open-source module design.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Cables ; Formability ; Robot control ; Robots ; State estimation ; Stiffness ; Tensegrity ; Torque sensors (robotics)</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mi, Jonathan</creatorcontrib><creatorcontrib>Tong, Wenzhe</creatorcontrib><creatorcontrib>Ma, Yilin</creatorcontrib><creatorcontrib>Huang, Xiaonan</creatorcontrib><title>Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot</title><title>arXiv.org</title><description>Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation (<1% error relative to bar length) and variable stiffness control of the cable actuator up to 7 times the minimum stiffness for self support. The presented tensegrity robot serves as a platform for future advancements in autonomous operation and open-source module design.</description><subject>Actuators</subject><subject>Cables</subject><subject>Formability</subject><subject>Robot control</subject><subject>Robots</subject><subject>State estimation</subject><subject>Stiffness</subject><subject>Tensegrity</subject><subject>Torque sensors (robotics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNytEKgjAUgOERBEn5Dge6FuammZehRbdWdCvTjjIRVztb0NtX0AN09V_834wFQso42iZCLFhINHDOxSYTaSoDVpVIup_AdKDgqqxWzYhwdrrrJiSCyivSUakttg5Kq58IxZdEu9Z55fAGF5wIe6vdC06mMW7F5p0aCcNfl2x92F-KY3S35uGRXD0Yb6fPqmXMRZrleZ7I_9QbNnQ-qw</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Mi, Jonathan</creator><creator>Tong, Wenzhe</creator><creator>Ma, Yilin</creator><creator>Huang, Xiaonan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240909</creationdate><title>Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot</title><author>Mi, Jonathan ; Tong, Wenzhe ; Ma, Yilin ; Huang, Xiaonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31025799943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Cables</topic><topic>Formability</topic><topic>Robot control</topic><topic>Robots</topic><topic>State estimation</topic><topic>Stiffness</topic><topic>Tensegrity</topic><topic>Torque sensors (robotics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mi, Jonathan</creatorcontrib><creatorcontrib>Tong, Wenzhe</creatorcontrib><creatorcontrib>Ma, Yilin</creatorcontrib><creatorcontrib>Huang, Xiaonan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Jonathan</au><au>Tong, Wenzhe</au><au>Ma, Yilin</au><au>Huang, Xiaonan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot</atitle><jtitle>arXiv.org</jtitle><date>2024-09-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Tensegrity robots excel in tasks requiring extreme levels of deformability and robustness. However, there are challenges in state estimation and payload versatility due to their high number of degrees of freedom and unconventional shape. This paper introduces a modular three-bar tensegrity robot featuring a customizable payload design. Our tensegrity robot employs a novel Quasi-Direct Drive (QDD) cable actuator paired with low-stretch polymer cables to achieve accurate proprioception without the need for external force or torque sensors. The design allows for on-the-fly stiffness tuning for better environment and payload adaptability. In this paper, we present the design, fabrication, assembly, and experimental results of the robot. Experimental data demonstrates the high accuracy cable length estimation (<1% error relative to bar length) and variable stiffness control of the cable actuator up to 7 times the minimum stiffness for self support. The presented tensegrity robot serves as a platform for future advancements in autonomous operation and open-source module design.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3102579994 |
source | Free E- Journals |
subjects | Actuators Cables Formability Robot control Robots State estimation Stiffness Tensegrity Torque sensors (robotics) |
title | Design of a Variable Stiffness Quasi-Direct Drive Cable-Actuated Tensegrity Robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Design%20of%20a%20Variable%20Stiffness%20Quasi-Direct%20Drive%20Cable-Actuated%20Tensegrity%20Robot&rft.jtitle=arXiv.org&rft.au=Mi,%20Jonathan&rft.date=2024-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3102579994%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102579994&rft_id=info:pmid/&rfr_iscdi=true |