Ramsey-Borde Atom Interferometry with a Thermal Strontium Beam for a Compact Optical Clock

Compact optical atomic clocks have become increasingly important in field applications and clock networks. Systems based on Ramsey-Borde interferometry (RBI) with a thermal atomic beam seem promising to fill a technology gap in optical atomic clocks, as they offer higher stability than optical vapou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Fartmann, Oliver, Jutisz, Martin, Mahdian, Amir, Schkolnik, Vladimir, Tietje, Ingmari C, Zimmermann, Conrad, Krutzik, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fartmann, Oliver
Jutisz, Martin
Mahdian, Amir
Schkolnik, Vladimir
Tietje, Ingmari C
Zimmermann, Conrad
Krutzik, Markus
description Compact optical atomic clocks have become increasingly important in field applications and clock networks. Systems based on Ramsey-Borde interferometry (RBI) with a thermal atomic beam seem promising to fill a technology gap in optical atomic clocks, as they offer higher stability than optical vapour cell clocks while being less complex than cold atomic clocks. Here, we demonstrate RBI with strontium atoms, utilizing the narrow 1S0 -> 3P1 intercombination line at 689 nm, yielding a 60 kHz broad spectral feature. The obtained Ramsey fringes for varying laser power are analyzed and compared with a numerical model. The 1S0 -> 1P1 transition at 461 nm is used for fluorescence detection. Analyzing the slope of the RBI signal and the fluorescence detection noise yields an estimated short-term stability of 4x10-14 / sqrt{tau}. We present our experimental setup in detail, including the atomic beam source, frequency-modulation spectroscopy to lock the 461 nm laser, laser power stabilization and the high-finesse cavity pre-stabilization of the 689 nm laser. Our system serves as a ground testbed for future clock systems in mobile and space applications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3102579305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102579305</sourcerecordid><originalsourceid>FETCH-proquest_journals_31025793053</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCIr6DgfOhZhYq6MWRSdBnVxKqFesNr16uSK-vR18AKd_-P6eGhprZ9FybsxATUJ4aK3NIjFxbIfqenI-4CfaEN8Q1kIeDrUgF8jkUfgD71Lu4OByR_augrMw1VK2HjboPBTEHabkG5cLHBsp825KK8qfY9UvXBVw8utITXfbS7qPGqZXi0GyB7Vcd5TZmTZxsrI6tv9dX-NiQfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102579305</pqid></control><display><type>article</type><title>Ramsey-Borde Atom Interferometry with a Thermal Strontium Beam for a Compact Optical Clock</title><source>Free E- Journals</source><creator>Fartmann, Oliver ; Jutisz, Martin ; Mahdian, Amir ; Schkolnik, Vladimir ; Tietje, Ingmari C ; Zimmermann, Conrad ; Krutzik, Markus</creator><creatorcontrib>Fartmann, Oliver ; Jutisz, Martin ; Mahdian, Amir ; Schkolnik, Vladimir ; Tietje, Ingmari C ; Zimmermann, Conrad ; Krutzik, Markus</creatorcontrib><description>Compact optical atomic clocks have become increasingly important in field applications and clock networks. Systems based on Ramsey-Borde interferometry (RBI) with a thermal atomic beam seem promising to fill a technology gap in optical atomic clocks, as they offer higher stability than optical vapour cell clocks while being less complex than cold atomic clocks. Here, we demonstrate RBI with strontium atoms, utilizing the narrow 1S0 -&gt; 3P1 intercombination line at 689 nm, yielding a 60 kHz broad spectral feature. The obtained Ramsey fringes for varying laser power are analyzed and compared with a numerical model. The 1S0 -&gt; 1P1 transition at 461 nm is used for fluorescence detection. Analyzing the slope of the RBI signal and the fluorescence detection noise yields an estimated short-term stability of 4x10-14 / sqrt{tau}. We present our experimental setup in detail, including the atomic beam source, frequency-modulation spectroscopy to lock the 461 nm laser, laser power stabilization and the high-finesse cavity pre-stabilization of the 689 nm laser. Our system serves as a ground testbed for future clock systems in mobile and space applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atom interferometry ; Atomic beams ; Atomic clocks ; Clock systems ; Clocks &amp; watches ; Fluorescence ; Interferometry ; Lasers ; Line spectra ; Numerical models ; Slope stability</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fartmann, Oliver</creatorcontrib><creatorcontrib>Jutisz, Martin</creatorcontrib><creatorcontrib>Mahdian, Amir</creatorcontrib><creatorcontrib>Schkolnik, Vladimir</creatorcontrib><creatorcontrib>Tietje, Ingmari C</creatorcontrib><creatorcontrib>Zimmermann, Conrad</creatorcontrib><creatorcontrib>Krutzik, Markus</creatorcontrib><title>Ramsey-Borde Atom Interferometry with a Thermal Strontium Beam for a Compact Optical Clock</title><title>arXiv.org</title><description>Compact optical atomic clocks have become increasingly important in field applications and clock networks. Systems based on Ramsey-Borde interferometry (RBI) with a thermal atomic beam seem promising to fill a technology gap in optical atomic clocks, as they offer higher stability than optical vapour cell clocks while being less complex than cold atomic clocks. Here, we demonstrate RBI with strontium atoms, utilizing the narrow 1S0 -&gt; 3P1 intercombination line at 689 nm, yielding a 60 kHz broad spectral feature. The obtained Ramsey fringes for varying laser power are analyzed and compared with a numerical model. The 1S0 -&gt; 1P1 transition at 461 nm is used for fluorescence detection. Analyzing the slope of the RBI signal and the fluorescence detection noise yields an estimated short-term stability of 4x10-14 / sqrt{tau}. We present our experimental setup in detail, including the atomic beam source, frequency-modulation spectroscopy to lock the 461 nm laser, laser power stabilization and the high-finesse cavity pre-stabilization of the 689 nm laser. Our system serves as a ground testbed for future clock systems in mobile and space applications.</description><subject>Atom interferometry</subject><subject>Atomic beams</subject><subject>Atomic clocks</subject><subject>Clock systems</subject><subject>Clocks &amp; watches</subject><subject>Fluorescence</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Line spectra</subject><subject>Numerical models</subject><subject>Slope stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCIr6DgfOhZhYq6MWRSdBnVxKqFesNr16uSK-vR18AKd_-P6eGhprZ9FybsxATUJ4aK3NIjFxbIfqenI-4CfaEN8Q1kIeDrUgF8jkUfgD71Lu4OByR_augrMw1VK2HjboPBTEHabkG5cLHBsp825KK8qfY9UvXBVw8utITXfbS7qPGqZXi0GyB7Vcd5TZmTZxsrI6tv9dX-NiQfo</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Fartmann, Oliver</creator><creator>Jutisz, Martin</creator><creator>Mahdian, Amir</creator><creator>Schkolnik, Vladimir</creator><creator>Tietje, Ingmari C</creator><creator>Zimmermann, Conrad</creator><creator>Krutzik, Markus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240909</creationdate><title>Ramsey-Borde Atom Interferometry with a Thermal Strontium Beam for a Compact Optical Clock</title><author>Fartmann, Oliver ; Jutisz, Martin ; Mahdian, Amir ; Schkolnik, Vladimir ; Tietje, Ingmari C ; Zimmermann, Conrad ; Krutzik, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31025793053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atom interferometry</topic><topic>Atomic beams</topic><topic>Atomic clocks</topic><topic>Clock systems</topic><topic>Clocks &amp; watches</topic><topic>Fluorescence</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Line spectra</topic><topic>Numerical models</topic><topic>Slope stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Fartmann, Oliver</creatorcontrib><creatorcontrib>Jutisz, Martin</creatorcontrib><creatorcontrib>Mahdian, Amir</creatorcontrib><creatorcontrib>Schkolnik, Vladimir</creatorcontrib><creatorcontrib>Tietje, Ingmari C</creatorcontrib><creatorcontrib>Zimmermann, Conrad</creatorcontrib><creatorcontrib>Krutzik, Markus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fartmann, Oliver</au><au>Jutisz, Martin</au><au>Mahdian, Amir</au><au>Schkolnik, Vladimir</au><au>Tietje, Ingmari C</au><au>Zimmermann, Conrad</au><au>Krutzik, Markus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ramsey-Borde Atom Interferometry with a Thermal Strontium Beam for a Compact Optical Clock</atitle><jtitle>arXiv.org</jtitle><date>2024-09-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Compact optical atomic clocks have become increasingly important in field applications and clock networks. Systems based on Ramsey-Borde interferometry (RBI) with a thermal atomic beam seem promising to fill a technology gap in optical atomic clocks, as they offer higher stability than optical vapour cell clocks while being less complex than cold atomic clocks. Here, we demonstrate RBI with strontium atoms, utilizing the narrow 1S0 -&gt; 3P1 intercombination line at 689 nm, yielding a 60 kHz broad spectral feature. The obtained Ramsey fringes for varying laser power are analyzed and compared with a numerical model. The 1S0 -&gt; 1P1 transition at 461 nm is used for fluorescence detection. Analyzing the slope of the RBI signal and the fluorescence detection noise yields an estimated short-term stability of 4x10-14 / sqrt{tau}. We present our experimental setup in detail, including the atomic beam source, frequency-modulation spectroscopy to lock the 461 nm laser, laser power stabilization and the high-finesse cavity pre-stabilization of the 689 nm laser. Our system serves as a ground testbed for future clock systems in mobile and space applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3102579305
source Free E- Journals
subjects Atom interferometry
Atomic beams
Atomic clocks
Clock systems
Clocks & watches
Fluorescence
Interferometry
Lasers
Line spectra
Numerical models
Slope stability
title Ramsey-Borde Atom Interferometry with a Thermal Strontium Beam for a Compact Optical Clock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ramsey-Borde%20Atom%20Interferometry%20with%20a%20Thermal%20Strontium%20Beam%20for%20a%20Compact%20Optical%20Clock&rft.jtitle=arXiv.org&rft.au=Fartmann,%20Oliver&rft.date=2024-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3102579305%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102579305&rft_id=info:pmid/&rfr_iscdi=true