Findings of the 2024 Mandarin Stuttering Event Detection and Automatic Speech Recognition Challenge

The StutteringSpeech Challenge focuses on advancing speech technologies for people who stutter, specifically targeting Stuttering Event Detection (SED) and Automatic Speech Recognition (ASR) in Mandarin. The challenge comprises three tracks: (1) SED, which aims to develop systems for detection of st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Xue, Hongfei, Gong, Rong, Shao, Mingchen, Xu, Xin, Wang, Lezhi, Xie, Lei, Bu, Hui, Zhou, Jiaming, Qin, Yong, Du, Jun, Li, Ming, Zhang, Binbin, Jia, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xue, Hongfei
Gong, Rong
Shao, Mingchen
Xu, Xin
Wang, Lezhi
Xie, Lei
Bu, Hui
Zhou, Jiaming
Qin, Yong
Du, Jun
Li, Ming
Zhang, Binbin
Jia, Bin
description The StutteringSpeech Challenge focuses on advancing speech technologies for people who stutter, specifically targeting Stuttering Event Detection (SED) and Automatic Speech Recognition (ASR) in Mandarin. The challenge comprises three tracks: (1) SED, which aims to develop systems for detection of stuttering events; (2) ASR, which focuses on creating robust systems for recognizing stuttered speech; and (3) Research track for innovative approaches utilizing the provided dataset. We utilizes an open-source Mandarin stuttering dataset AS-70, which has been split into new training and test sets for the challenge. This paper presents the dataset, details the challenge tracks, and analyzes the performance of the top systems, highlighting improvements in detection accuracy and reductions in recognition error rates. Our findings underscore the potential of specialized models and augmentation strategies in developing stuttered speech technologies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3102578437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102578437</sourcerecordid><originalsourceid>FETCH-proquest_journals_31025784373</originalsourceid><addsrcrecordid>eNqNykEKwjAQheEgCBbtHQZcCzFpbbeiFTdu1L2EdEwjdVKbqee3iAdw9X5430QkSuv1qsyUmok0xoeUUm0Klec6EfbgqfbkIoQ7cIOgpMrgZKg2vSe48MCMYzmo3kgMe2S07APBSGA7cHga9hYuHaJt4Iw2OPJfsGtM2yI5XIjp3bQR09_OxfJQXXfHVdeH14CRb48w9DReN72WKi_KTBf6P_UBHlBFAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102578437</pqid></control><display><type>article</type><title>Findings of the 2024 Mandarin Stuttering Event Detection and Automatic Speech Recognition Challenge</title><source>Free E- Journals</source><creator>Xue, Hongfei ; Gong, Rong ; Shao, Mingchen ; Xu, Xin ; Wang, Lezhi ; Xie, Lei ; Bu, Hui ; Zhou, Jiaming ; Qin, Yong ; Du, Jun ; Li, Ming ; Zhang, Binbin ; Jia, Bin</creator><creatorcontrib>Xue, Hongfei ; Gong, Rong ; Shao, Mingchen ; Xu, Xin ; Wang, Lezhi ; Xie, Lei ; Bu, Hui ; Zhou, Jiaming ; Qin, Yong ; Du, Jun ; Li, Ming ; Zhang, Binbin ; Jia, Bin</creatorcontrib><description>The StutteringSpeech Challenge focuses on advancing speech technologies for people who stutter, specifically targeting Stuttering Event Detection (SED) and Automatic Speech Recognition (ASR) in Mandarin. The challenge comprises three tracks: (1) SED, which aims to develop systems for detection of stuttering events; (2) ASR, which focuses on creating robust systems for recognizing stuttered speech; and (3) Research track for innovative approaches utilizing the provided dataset. We utilizes an open-source Mandarin stuttering dataset AS-70, which has been split into new training and test sets for the challenge. This paper presents the dataset, details the challenge tracks, and analyzes the performance of the top systems, highlighting improvements in detection accuracy and reductions in recognition error rates. Our findings underscore the potential of specialized models and augmentation strategies in developing stuttered speech technologies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automatic speech recognition ; Datasets ; Error analysis ; Error detection</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xue, Hongfei</creatorcontrib><creatorcontrib>Gong, Rong</creatorcontrib><creatorcontrib>Shao, Mingchen</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Wang, Lezhi</creatorcontrib><creatorcontrib>Xie, Lei</creatorcontrib><creatorcontrib>Bu, Hui</creatorcontrib><creatorcontrib>Zhou, Jiaming</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Du, Jun</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhang, Binbin</creatorcontrib><creatorcontrib>Jia, Bin</creatorcontrib><title>Findings of the 2024 Mandarin Stuttering Event Detection and Automatic Speech Recognition Challenge</title><title>arXiv.org</title><description>The StutteringSpeech Challenge focuses on advancing speech technologies for people who stutter, specifically targeting Stuttering Event Detection (SED) and Automatic Speech Recognition (ASR) in Mandarin. The challenge comprises three tracks: (1) SED, which aims to develop systems for detection of stuttering events; (2) ASR, which focuses on creating robust systems for recognizing stuttered speech; and (3) Research track for innovative approaches utilizing the provided dataset. We utilizes an open-source Mandarin stuttering dataset AS-70, which has been split into new training and test sets for the challenge. This paper presents the dataset, details the challenge tracks, and analyzes the performance of the top systems, highlighting improvements in detection accuracy and reductions in recognition error rates. Our findings underscore the potential of specialized models and augmentation strategies in developing stuttered speech technologies.</description><subject>Automatic speech recognition</subject><subject>Datasets</subject><subject>Error analysis</subject><subject>Error detection</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQheEgCBbtHQZcCzFpbbeiFTdu1L2EdEwjdVKbqee3iAdw9X5430QkSuv1qsyUmok0xoeUUm0Klec6EfbgqfbkIoQ7cIOgpMrgZKg2vSe48MCMYzmo3kgMe2S07APBSGA7cHga9hYuHaJt4Iw2OPJfsGtM2yI5XIjp3bQR09_OxfJQXXfHVdeH14CRb48w9DReN72WKi_KTBf6P_UBHlBFAg</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Xue, Hongfei</creator><creator>Gong, Rong</creator><creator>Shao, Mingchen</creator><creator>Xu, Xin</creator><creator>Wang, Lezhi</creator><creator>Xie, Lei</creator><creator>Bu, Hui</creator><creator>Zhou, Jiaming</creator><creator>Qin, Yong</creator><creator>Du, Jun</creator><creator>Li, Ming</creator><creator>Zhang, Binbin</creator><creator>Jia, Bin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240909</creationdate><title>Findings of the 2024 Mandarin Stuttering Event Detection and Automatic Speech Recognition Challenge</title><author>Xue, Hongfei ; Gong, Rong ; Shao, Mingchen ; Xu, Xin ; Wang, Lezhi ; Xie, Lei ; Bu, Hui ; Zhou, Jiaming ; Qin, Yong ; Du, Jun ; Li, Ming ; Zhang, Binbin ; Jia, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31025784373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic speech recognition</topic><topic>Datasets</topic><topic>Error analysis</topic><topic>Error detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Xue, Hongfei</creatorcontrib><creatorcontrib>Gong, Rong</creatorcontrib><creatorcontrib>Shao, Mingchen</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Wang, Lezhi</creatorcontrib><creatorcontrib>Xie, Lei</creatorcontrib><creatorcontrib>Bu, Hui</creatorcontrib><creatorcontrib>Zhou, Jiaming</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Du, Jun</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhang, Binbin</creatorcontrib><creatorcontrib>Jia, Bin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Hongfei</au><au>Gong, Rong</au><au>Shao, Mingchen</au><au>Xu, Xin</au><au>Wang, Lezhi</au><au>Xie, Lei</au><au>Bu, Hui</au><au>Zhou, Jiaming</au><au>Qin, Yong</au><au>Du, Jun</au><au>Li, Ming</au><au>Zhang, Binbin</au><au>Jia, Bin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Findings of the 2024 Mandarin Stuttering Event Detection and Automatic Speech Recognition Challenge</atitle><jtitle>arXiv.org</jtitle><date>2024-09-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The StutteringSpeech Challenge focuses on advancing speech technologies for people who stutter, specifically targeting Stuttering Event Detection (SED) and Automatic Speech Recognition (ASR) in Mandarin. The challenge comprises three tracks: (1) SED, which aims to develop systems for detection of stuttering events; (2) ASR, which focuses on creating robust systems for recognizing stuttered speech; and (3) Research track for innovative approaches utilizing the provided dataset. We utilizes an open-source Mandarin stuttering dataset AS-70, which has been split into new training and test sets for the challenge. This paper presents the dataset, details the challenge tracks, and analyzes the performance of the top systems, highlighting improvements in detection accuracy and reductions in recognition error rates. Our findings underscore the potential of specialized models and augmentation strategies in developing stuttered speech technologies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3102578437
source Free E- Journals
subjects Automatic speech recognition
Datasets
Error analysis
Error detection
title Findings of the 2024 Mandarin Stuttering Event Detection and Automatic Speech Recognition Challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Findings%20of%20the%202024%20Mandarin%20Stuttering%20Event%20Detection%20and%20Automatic%20Speech%20Recognition%20Challenge&rft.jtitle=arXiv.org&rft.au=Xue,%20Hongfei&rft.date=2024-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3102578437%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102578437&rft_id=info:pmid/&rfr_iscdi=true