Solid Earth forcing of Mesozoic oceanic anoxic events
Oceanic anoxic events are geologically abrupt phases of extreme oxygen depletion in the oceans that disrupted marine ecosystems and brought about evolutionary turnover. Typically lasting ~1.5 million years, these events occurred frequently during the Mesozoic era, from about 183 to 85 million years...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2024-09, Vol.17 (9), p.926-935 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 9 |
container_start_page | 926 |
container_title | Nature geoscience |
container_volume | 17 |
creator | Gernon, T. M. Mills, B. J. W. Hincks, T. K. Merdith, A. S. Alcott, L. J. Rohling, E. J. Palmer, M. R. |
description | Oceanic anoxic events are geologically abrupt phases of extreme oxygen depletion in the oceans that disrupted marine ecosystems and brought about evolutionary turnover. Typically lasting ~1.5 million years, these events occurred frequently during the Mesozoic era, from about 183 to 85 million years ago, an interval associated with continental breakup and widespread large igneous province volcanism. One hypothesis suggests that anoxic events resulted from enhanced chemical weathering of Earth’s surface in a greenhouse world shaped by high volcanic carbon outgassing. Here we test this hypothesis using a combination of plate reconstructions, tectonic–geochemical analysis and global biogeochemical modelling. We show that enhanced weathering of mafic lithologies during continental breakup and nascent seafloor spreading can plausibly drive a succession of anoxic events. Weathering pulses collectively gave rise to substantial releases of the nutrient phosphorus to the oceans, stimulating biological primary production. This, in turn, enhanced organic carbon burial and caused widespread ocean deoxygenation on a scale sufficient to drive recurrent anoxia. This model complements volcanic outgassing-centred hypotheses for triggering these events by demonstrating well-quantified basaltic sources of phosphorus release during periods of intense weathering related to climate warmth. Our study highlights a close coupling between the solid Earth and biosphere during continental reorganization.
Enhanced chemical weathering following continental breakup may have driven a succession of Mesozoic oceanic anoxic events, according to tectonic and biogeochemical modelling. |
doi_str_mv | 10.1038/s41561-024-01496-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102574746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102574746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-acd95bf44f33cb98803c07d2519b67de47c44060acff06498edd54d555f2ac323</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEuHxB6hOojas7fX5rkRReEhBFEBtOX6Ei8I52BcE_HoMB6KjmilmZlcfIScMzhiI5jwjkzWjwJECw7amsEMmTElOoYVm99c3Le6Tg5xXADWgkhMi7-O6c9XMpOGpCjHZrl9WMVS3PseP2NkqWm_6oqaPb0X8q--HfET2gllnf_yjh-TxcvYwvabzu6ub6cWcWo44UGNdKxcBMQhhF23TgLCgHJesXdTKeVQWsXxibAhQY9t45yQ6KWXgxgouDsnpuLtJ8WXr86BXcZv6clILBlwqVFiXFB9TNsWckw96k7pnk941A_2FR494dMGjv_FoKCUxlnIJ90uf_qb_aX0CMmRm0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102574746</pqid></control><display><type>article</type><title>Solid Earth forcing of Mesozoic oceanic anoxic events</title><source>SpringerLink Journals</source><source>Nature</source><creator>Gernon, T. M. ; Mills, B. J. W. ; Hincks, T. K. ; Merdith, A. S. ; Alcott, L. J. ; Rohling, E. J. ; Palmer, M. R.</creator><creatorcontrib>Gernon, T. M. ; Mills, B. J. W. ; Hincks, T. K. ; Merdith, A. S. ; Alcott, L. J. ; Rohling, E. J. ; Palmer, M. R.</creatorcontrib><description>Oceanic anoxic events are geologically abrupt phases of extreme oxygen depletion in the oceans that disrupted marine ecosystems and brought about evolutionary turnover. Typically lasting ~1.5 million years, these events occurred frequently during the Mesozoic era, from about 183 to 85 million years ago, an interval associated with continental breakup and widespread large igneous province volcanism. One hypothesis suggests that anoxic events resulted from enhanced chemical weathering of Earth’s surface in a greenhouse world shaped by high volcanic carbon outgassing. Here we test this hypothesis using a combination of plate reconstructions, tectonic–geochemical analysis and global biogeochemical modelling. We show that enhanced weathering of mafic lithologies during continental breakup and nascent seafloor spreading can plausibly drive a succession of anoxic events. Weathering pulses collectively gave rise to substantial releases of the nutrient phosphorus to the oceans, stimulating biological primary production. This, in turn, enhanced organic carbon burial and caused widespread ocean deoxygenation on a scale sufficient to drive recurrent anoxia. This model complements volcanic outgassing-centred hypotheses for triggering these events by demonstrating well-quantified basaltic sources of phosphorus release during periods of intense weathering related to climate warmth. Our study highlights a close coupling between the solid Earth and biosphere during continental reorganization.
Enhanced chemical weathering following continental breakup may have driven a succession of Mesozoic oceanic anoxic events, according to tectonic and biogeochemical modelling.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-024-01496-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/2738 ; 704/106/413 ; 704/2151/209 ; 704/2151/210 ; 704/2151/213 ; Anoxia ; Biogeochemistry ; Biosphere ; Carbon sources ; Chemical weathering ; Climate models ; Deoxygenation ; Earth ; Earth and Environmental Science ; Earth Sciences ; Earth surface ; Earth System Sciences ; Geochemistry ; Geology ; Geophysics/Geodesy ; Hypotheses ; Marine ecosystems ; Marine geology ; Mesozoic ; Modelling ; Ocean floor ; Ocean models ; Oceans ; Organic carbon ; Outgassing ; Oxygen depletion ; Phosphorus ; Primary production ; Sea floor spreading ; Seafloor spreading ; Tectonics ; Volcanic activity ; Volcanism ; Weathering</subject><ispartof>Nature geoscience, 2024-09, Vol.17 (9), p.926-935</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-acd95bf44f33cb98803c07d2519b67de47c44060acff06498edd54d555f2ac323</cites><orcidid>0000-0002-7564-8149 ; 0000-0002-7717-2092 ; 0000-0003-4537-6194 ; 0000-0002-9141-0931 ; 0009-0000-6484-5406 ; 0000-0002-3020-0914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-024-01496-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-024-01496-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gernon, T. M.</creatorcontrib><creatorcontrib>Mills, B. J. W.</creatorcontrib><creatorcontrib>Hincks, T. K.</creatorcontrib><creatorcontrib>Merdith, A. S.</creatorcontrib><creatorcontrib>Alcott, L. J.</creatorcontrib><creatorcontrib>Rohling, E. J.</creatorcontrib><creatorcontrib>Palmer, M. R.</creatorcontrib><title>Solid Earth forcing of Mesozoic oceanic anoxic events</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Oceanic anoxic events are geologically abrupt phases of extreme oxygen depletion in the oceans that disrupted marine ecosystems and brought about evolutionary turnover. Typically lasting ~1.5 million years, these events occurred frequently during the Mesozoic era, from about 183 to 85 million years ago, an interval associated with continental breakup and widespread large igneous province volcanism. One hypothesis suggests that anoxic events resulted from enhanced chemical weathering of Earth’s surface in a greenhouse world shaped by high volcanic carbon outgassing. Here we test this hypothesis using a combination of plate reconstructions, tectonic–geochemical analysis and global biogeochemical modelling. We show that enhanced weathering of mafic lithologies during continental breakup and nascent seafloor spreading can plausibly drive a succession of anoxic events. Weathering pulses collectively gave rise to substantial releases of the nutrient phosphorus to the oceans, stimulating biological primary production. This, in turn, enhanced organic carbon burial and caused widespread ocean deoxygenation on a scale sufficient to drive recurrent anoxia. This model complements volcanic outgassing-centred hypotheses for triggering these events by demonstrating well-quantified basaltic sources of phosphorus release during periods of intense weathering related to climate warmth. Our study highlights a close coupling between the solid Earth and biosphere during continental reorganization.
Enhanced chemical weathering following continental breakup may have driven a succession of Mesozoic oceanic anoxic events, according to tectonic and biogeochemical modelling.</description><subject>704/106/2738</subject><subject>704/106/413</subject><subject>704/2151/209</subject><subject>704/2151/210</subject><subject>704/2151/213</subject><subject>Anoxia</subject><subject>Biogeochemistry</subject><subject>Biosphere</subject><subject>Carbon sources</subject><subject>Chemical weathering</subject><subject>Climate models</subject><subject>Deoxygenation</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth surface</subject><subject>Earth System Sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Hypotheses</subject><subject>Marine ecosystems</subject><subject>Marine geology</subject><subject>Mesozoic</subject><subject>Modelling</subject><subject>Ocean floor</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Outgassing</subject><subject>Oxygen depletion</subject><subject>Phosphorus</subject><subject>Primary production</subject><subject>Sea floor spreading</subject><subject>Seafloor spreading</subject><subject>Tectonics</subject><subject>Volcanic activity</subject><subject>Volcanism</subject><subject>Weathering</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDtPAzEQhC0EEuHxB6hOojas7fX5rkRReEhBFEBtOX6Ei8I52BcE_HoMB6KjmilmZlcfIScMzhiI5jwjkzWjwJECw7amsEMmTElOoYVm99c3Le6Tg5xXADWgkhMi7-O6c9XMpOGpCjHZrl9WMVS3PseP2NkqWm_6oqaPb0X8q--HfET2gllnf_yjh-TxcvYwvabzu6ub6cWcWo44UGNdKxcBMQhhF23TgLCgHJesXdTKeVQWsXxibAhQY9t45yQ6KWXgxgouDsnpuLtJ8WXr86BXcZv6clILBlwqVFiXFB9TNsWckw96k7pnk941A_2FR494dMGjv_FoKCUxlnIJ90uf_qb_aX0CMmRm0A</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gernon, T. M.</creator><creator>Mills, B. J. W.</creator><creator>Hincks, T. K.</creator><creator>Merdith, A. S.</creator><creator>Alcott, L. J.</creator><creator>Rohling, E. J.</creator><creator>Palmer, M. R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-7564-8149</orcidid><orcidid>https://orcid.org/0000-0002-7717-2092</orcidid><orcidid>https://orcid.org/0000-0003-4537-6194</orcidid><orcidid>https://orcid.org/0000-0002-9141-0931</orcidid><orcidid>https://orcid.org/0009-0000-6484-5406</orcidid><orcidid>https://orcid.org/0000-0002-3020-0914</orcidid></search><sort><creationdate>20240901</creationdate><title>Solid Earth forcing of Mesozoic oceanic anoxic events</title><author>Gernon, T. M. ; Mills, B. J. W. ; Hincks, T. K. ; Merdith, A. S. ; Alcott, L. J. ; Rohling, E. J. ; Palmer, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-acd95bf44f33cb98803c07d2519b67de47c44060acff06498edd54d555f2ac323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>704/106/2738</topic><topic>704/106/413</topic><topic>704/2151/209</topic><topic>704/2151/210</topic><topic>704/2151/213</topic><topic>Anoxia</topic><topic>Biogeochemistry</topic><topic>Biosphere</topic><topic>Carbon sources</topic><topic>Chemical weathering</topic><topic>Climate models</topic><topic>Deoxygenation</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth surface</topic><topic>Earth System Sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Hypotheses</topic><topic>Marine ecosystems</topic><topic>Marine geology</topic><topic>Mesozoic</topic><topic>Modelling</topic><topic>Ocean floor</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Outgassing</topic><topic>Oxygen depletion</topic><topic>Phosphorus</topic><topic>Primary production</topic><topic>Sea floor spreading</topic><topic>Seafloor spreading</topic><topic>Tectonics</topic><topic>Volcanic activity</topic><topic>Volcanism</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gernon, T. M.</creatorcontrib><creatorcontrib>Mills, B. J. W.</creatorcontrib><creatorcontrib>Hincks, T. K.</creatorcontrib><creatorcontrib>Merdith, A. S.</creatorcontrib><creatorcontrib>Alcott, L. J.</creatorcontrib><creatorcontrib>Rohling, E. J.</creatorcontrib><creatorcontrib>Palmer, M. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gernon, T. M.</au><au>Mills, B. J. W.</au><au>Hincks, T. K.</au><au>Merdith, A. S.</au><au>Alcott, L. J.</au><au>Rohling, E. J.</au><au>Palmer, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid Earth forcing of Mesozoic oceanic anoxic events</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>17</volume><issue>9</issue><spage>926</spage><epage>935</epage><pages>926-935</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Oceanic anoxic events are geologically abrupt phases of extreme oxygen depletion in the oceans that disrupted marine ecosystems and brought about evolutionary turnover. Typically lasting ~1.5 million years, these events occurred frequently during the Mesozoic era, from about 183 to 85 million years ago, an interval associated with continental breakup and widespread large igneous province volcanism. One hypothesis suggests that anoxic events resulted from enhanced chemical weathering of Earth’s surface in a greenhouse world shaped by high volcanic carbon outgassing. Here we test this hypothesis using a combination of plate reconstructions, tectonic–geochemical analysis and global biogeochemical modelling. We show that enhanced weathering of mafic lithologies during continental breakup and nascent seafloor spreading can plausibly drive a succession of anoxic events. Weathering pulses collectively gave rise to substantial releases of the nutrient phosphorus to the oceans, stimulating biological primary production. This, in turn, enhanced organic carbon burial and caused widespread ocean deoxygenation on a scale sufficient to drive recurrent anoxia. This model complements volcanic outgassing-centred hypotheses for triggering these events by demonstrating well-quantified basaltic sources of phosphorus release during periods of intense weathering related to climate warmth. Our study highlights a close coupling between the solid Earth and biosphere during continental reorganization.
Enhanced chemical weathering following continental breakup may have driven a succession of Mesozoic oceanic anoxic events, according to tectonic and biogeochemical modelling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-024-01496-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7564-8149</orcidid><orcidid>https://orcid.org/0000-0002-7717-2092</orcidid><orcidid>https://orcid.org/0000-0003-4537-6194</orcidid><orcidid>https://orcid.org/0000-0002-9141-0931</orcidid><orcidid>https://orcid.org/0009-0000-6484-5406</orcidid><orcidid>https://orcid.org/0000-0002-3020-0914</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2024-09, Vol.17 (9), p.926-935 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_3102574746 |
source | SpringerLink Journals; Nature |
subjects | 704/106/2738 704/106/413 704/2151/209 704/2151/210 704/2151/213 Anoxia Biogeochemistry Biosphere Carbon sources Chemical weathering Climate models Deoxygenation Earth Earth and Environmental Science Earth Sciences Earth surface Earth System Sciences Geochemistry Geology Geophysics/Geodesy Hypotheses Marine ecosystems Marine geology Mesozoic Modelling Ocean floor Ocean models Oceans Organic carbon Outgassing Oxygen depletion Phosphorus Primary production Sea floor spreading Seafloor spreading Tectonics Volcanic activity Volcanism Weathering |
title | Solid Earth forcing of Mesozoic oceanic anoxic events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%20Earth%20forcing%20of%20Mesozoic%20oceanic%20anoxic%20events&rft.jtitle=Nature%20geoscience&rft.au=Gernon,%20T.%20M.&rft.date=2024-09-01&rft.volume=17&rft.issue=9&rft.spage=926&rft.epage=935&rft.pages=926-935&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-024-01496-0&rft_dat=%3Cproquest_cross%3E3102574746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102574746&rft_id=info:pmid/&rfr_iscdi=true |