Exploring pattern recognition classifier for bearing fault diagnosis
Traditional bearing sensory diagnostic include touching and hearing rely on personal experience, and for more complex system are unable to meet the needs of equipment fault diagnosis. The research on bearing fault diagnosis is developing significantly. Bearings are used in rotating machinery and mos...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3065 |
creator | Darwis, Sutawanir Hajarisman, Nusar Suliadi, S. Widodo, Achmad Islamiyati, Rejeki Wulan |
description | Traditional bearing sensory diagnostic include touching and hearing rely on personal experience, and for more complex system are unable to meet the needs of equipment fault diagnosis. The research on bearing fault diagnosis is developing significantly. Bearings are used in rotating machinery and most machinery failures are caused by bearing failures. The fault diagnosis of bearings is an important research area. The core of bearing fault diagnosis is the pattern recognition of fault features. The key of pattern recognition is to develop a reasonable classifier. Intelligent pattern recognition has been developed such as principal components, support vector machine, neural network. In this study, a bearing fault diagnosis based on exploring pattern recognition is proposed. The key to pattern recognition is to design a significant classifier. A number of features from bearing vibration of normal and fault bearing are extracted and processed using principal components of correlation matrix. Plot of principal components shows the visualization of normal and fault bearing and the classifier is chosen subjectively. The principal components exploration will be confirmed using least squares support vector machine. The parameter of support vector machine estimated using heuristic optimization particle swarm optimization. The proposed method can be applied in the detection of faults of bearing. |
doi_str_mv | 10.1063/5.0225023 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3102157166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102157166</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-bb1b9749f77d6e864908ffed4a20ade66f4053facd11ead72e6299907b07bc903</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoOKcH_4OCN6Hzm9_NUeamwsDLDt5C2iQlozY1aUH_ezs3ePAuH97jPYTuMawwCPrEV0AIB0Iv0AJzjkspsLhECwDFSsLo5zW6yfkAQJSU1QK9bH6GLqbQt8VgxtGlvkiuiW0fxhD7oulMzsEHlwofU1E78496M3VjYYNp-5hDvkVX3nTZ3Z19ifbbzX79Vu4-Xt_Xz7tyEJSWdY1rJZnyUlrhKsEUVN47ywwBY50QngGn3jQWY2esJE4QpRTIelajgC7Rwyl2SPF7cnnUhzilfm7UFAPBXGIhZurxROUmjOa4Qg8pfJn0qzHo40ma6_NJ9A_I3Flu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3102157166</pqid></control><display><type>conference_proceeding</type><title>Exploring pattern recognition classifier for bearing fault diagnosis</title><source>AIP Journals Complete</source><creator>Darwis, Sutawanir ; Hajarisman, Nusar ; Suliadi, S. ; Widodo, Achmad ; Islamiyati, Rejeki Wulan</creator><contributor>Rahim, Robbi ; Respati, Titik ; Sirodj, Dwi Agustin Nuraini ; Nugraha ; Nurrahman, Ahmad Arif</contributor><creatorcontrib>Darwis, Sutawanir ; Hajarisman, Nusar ; Suliadi, S. ; Widodo, Achmad ; Islamiyati, Rejeki Wulan ; Rahim, Robbi ; Respati, Titik ; Sirodj, Dwi Agustin Nuraini ; Nugraha ; Nurrahman, Ahmad Arif</creatorcontrib><description>Traditional bearing sensory diagnostic include touching and hearing rely on personal experience, and for more complex system are unable to meet the needs of equipment fault diagnosis. The research on bearing fault diagnosis is developing significantly. Bearings are used in rotating machinery and most machinery failures are caused by bearing failures. The fault diagnosis of bearings is an important research area. The core of bearing fault diagnosis is the pattern recognition of fault features. The key of pattern recognition is to develop a reasonable classifier. Intelligent pattern recognition has been developed such as principal components, support vector machine, neural network. In this study, a bearing fault diagnosis based on exploring pattern recognition is proposed. The key to pattern recognition is to design a significant classifier. A number of features from bearing vibration of normal and fault bearing are extracted and processed using principal components of correlation matrix. Plot of principal components shows the visualization of normal and fault bearing and the classifier is chosen subjectively. The principal components exploration will be confirmed using least squares support vector machine. The parameter of support vector machine estimated using heuristic optimization particle swarm optimization. The proposed method can be applied in the detection of faults of bearing.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0225023</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Complex systems ; Correlation analysis ; Fault detection ; Fault diagnosis ; Feature recognition ; Heuristic methods ; Neural networks ; Parameter estimation ; Particle swarm optimization ; Pattern recognition ; Rotating machinery ; Support vector machines</subject><ispartof>AIP conference proceedings, 2024, Vol.3065 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0225023$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Rahim, Robbi</contributor><contributor>Respati, Titik</contributor><contributor>Sirodj, Dwi Agustin Nuraini</contributor><contributor>Nugraha</contributor><contributor>Nurrahman, Ahmad Arif</contributor><creatorcontrib>Darwis, Sutawanir</creatorcontrib><creatorcontrib>Hajarisman, Nusar</creatorcontrib><creatorcontrib>Suliadi, S.</creatorcontrib><creatorcontrib>Widodo, Achmad</creatorcontrib><creatorcontrib>Islamiyati, Rejeki Wulan</creatorcontrib><title>Exploring pattern recognition classifier for bearing fault diagnosis</title><title>AIP conference proceedings</title><description>Traditional bearing sensory diagnostic include touching and hearing rely on personal experience, and for more complex system are unable to meet the needs of equipment fault diagnosis. The research on bearing fault diagnosis is developing significantly. Bearings are used in rotating machinery and most machinery failures are caused by bearing failures. The fault diagnosis of bearings is an important research area. The core of bearing fault diagnosis is the pattern recognition of fault features. The key of pattern recognition is to develop a reasonable classifier. Intelligent pattern recognition has been developed such as principal components, support vector machine, neural network. In this study, a bearing fault diagnosis based on exploring pattern recognition is proposed. The key to pattern recognition is to design a significant classifier. A number of features from bearing vibration of normal and fault bearing are extracted and processed using principal components of correlation matrix. Plot of principal components shows the visualization of normal and fault bearing and the classifier is chosen subjectively. The principal components exploration will be confirmed using least squares support vector machine. The parameter of support vector machine estimated using heuristic optimization particle swarm optimization. The proposed method can be applied in the detection of faults of bearing.</description><subject>Complex systems</subject><subject>Correlation analysis</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature recognition</subject><subject>Heuristic methods</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Particle swarm optimization</subject><subject>Pattern recognition</subject><subject>Rotating machinery</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM9LwzAcxYMoOKcH_4OCN6Hzm9_NUeamwsDLDt5C2iQlozY1aUH_ezs3ePAuH97jPYTuMawwCPrEV0AIB0Iv0AJzjkspsLhECwDFSsLo5zW6yfkAQJSU1QK9bH6GLqbQt8VgxtGlvkiuiW0fxhD7oulMzsEHlwofU1E78496M3VjYYNp-5hDvkVX3nTZ3Z19ifbbzX79Vu4-Xt_Xz7tyEJSWdY1rJZnyUlrhKsEUVN47ywwBY50QngGn3jQWY2esJE4QpRTIelajgC7Rwyl2SPF7cnnUhzilfm7UFAPBXGIhZurxROUmjOa4Qg8pfJn0qzHo40ma6_NJ9A_I3Flu</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Darwis, Sutawanir</creator><creator>Hajarisman, Nusar</creator><creator>Suliadi, S.</creator><creator>Widodo, Achmad</creator><creator>Islamiyati, Rejeki Wulan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240909</creationdate><title>Exploring pattern recognition classifier for bearing fault diagnosis</title><author>Darwis, Sutawanir ; Hajarisman, Nusar ; Suliadi, S. ; Widodo, Achmad ; Islamiyati, Rejeki Wulan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-bb1b9749f77d6e864908ffed4a20ade66f4053facd11ead72e6299907b07bc903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex systems</topic><topic>Correlation analysis</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature recognition</topic><topic>Heuristic methods</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Particle swarm optimization</topic><topic>Pattern recognition</topic><topic>Rotating machinery</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darwis, Sutawanir</creatorcontrib><creatorcontrib>Hajarisman, Nusar</creatorcontrib><creatorcontrib>Suliadi, S.</creatorcontrib><creatorcontrib>Widodo, Achmad</creatorcontrib><creatorcontrib>Islamiyati, Rejeki Wulan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darwis, Sutawanir</au><au>Hajarisman, Nusar</au><au>Suliadi, S.</au><au>Widodo, Achmad</au><au>Islamiyati, Rejeki Wulan</au><au>Rahim, Robbi</au><au>Respati, Titik</au><au>Sirodj, Dwi Agustin Nuraini</au><au>Nugraha</au><au>Nurrahman, Ahmad Arif</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploring pattern recognition classifier for bearing fault diagnosis</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-09</date><risdate>2024</risdate><volume>3065</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Traditional bearing sensory diagnostic include touching and hearing rely on personal experience, and for more complex system are unable to meet the needs of equipment fault diagnosis. The research on bearing fault diagnosis is developing significantly. Bearings are used in rotating machinery and most machinery failures are caused by bearing failures. The fault diagnosis of bearings is an important research area. The core of bearing fault diagnosis is the pattern recognition of fault features. The key of pattern recognition is to develop a reasonable classifier. Intelligent pattern recognition has been developed such as principal components, support vector machine, neural network. In this study, a bearing fault diagnosis based on exploring pattern recognition is proposed. The key to pattern recognition is to design a significant classifier. A number of features from bearing vibration of normal and fault bearing are extracted and processed using principal components of correlation matrix. Plot of principal components shows the visualization of normal and fault bearing and the classifier is chosen subjectively. The principal components exploration will be confirmed using least squares support vector machine. The parameter of support vector machine estimated using heuristic optimization particle swarm optimization. The proposed method can be applied in the detection of faults of bearing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0225023</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3065 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3102157166 |
source | AIP Journals Complete |
subjects | Complex systems Correlation analysis Fault detection Fault diagnosis Feature recognition Heuristic methods Neural networks Parameter estimation Particle swarm optimization Pattern recognition Rotating machinery Support vector machines |
title | Exploring pattern recognition classifier for bearing fault diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploring%20pattern%20recognition%20classifier%20for%20bearing%20fault%20diagnosis&rft.btitle=AIP%20conference%20proceedings&rft.au=Darwis,%20Sutawanir&rft.date=2024-09-09&rft.volume=3065&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0225023&rft_dat=%3Cproquest_scita%3E3102157166%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102157166&rft_id=info:pmid/&rfr_iscdi=true |