OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in obstetrics & gynecology 2024-09, Vol.64 (S1), p.13-13
Hauptverfasser: Geysels, A., Garofalo, G., Timmerman, S., Ceusters, J., Fischerová, D., Testa, A.C., Moro, F., Buonomo, F., Valentin, L., Sladkevicius, P., Van Holsbeke, C., Kudla, M.J., Czekierdowski, A., Epstein, E., Groszmann, Y., Blaschko, M., De Moor, B., Van Calster, B., Timmerman, D., Froyman, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue S1
container_start_page 13
container_title Ultrasound in obstetrics & gynecology
container_volume 64
creator Geysels, A.
Garofalo, G.
Timmerman, S.
Ceusters, J.
Fischerová, D.
Testa, A.C.
Moro, F.
Buonomo, F.
Valentin, L.
Sladkevicius, P.
Van Holsbeke, C.
Kudla, M.J.
Czekierdowski, A.
Epstein, E.
Groszmann, Y.
Blaschko, M.
De Moor, B.
Van Calster, B.
Timmerman, D.
Froyman, W.
description
doi_str_mv 10.1002/uog.27750
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102050673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102050673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1020-abd8b064a98be262dd45f96783b3c627cca12ee153dd0b75e3f764495607c60d3</originalsourceid><addsrcrecordid>eNp1kMFOwkAQhjdGExE9-AabeDKxMN1tdyk3AogkRC6SeNtsd6dYLG3dthBuPoLP6JNYxKunOcw383_5Cbn1oecDsH5TrHtMyhDOSMcPROSBhPCcdCAS4EkRsUtyVVUbABABFx3yvhxD2AM-pBPEkmaoXZ7m6-_PL8x1nKGlxU67VOfU6NygoxZrNHVa5HSf1m90NHmevrb0aD6kmpauqMrjeocPdNtkdWowrx3Sqm7s4ZpcJDqr8OZvdsnqcfoyfvIWy9l8PFp4xgcGno7tIG71dDSIkQlmbRAmkZADHnMjmDRG-wzRD7m1EMsQeSJFEEShAGkEWN4ld6e_rc5Hg1WtNkXj8jZS8WNCCELylro_UaaVrhwmqnTpVruD8kEdu1Rtl-q3y5btn9h9muHhf1CtlrPTxQ8sUnZm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102050673</pqid></control><display><type>article</type><title>OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study</title><source>Wiley Online Library All Journals</source><creator>Geysels, A. ; Garofalo, G. ; Timmerman, S. ; Ceusters, J. ; Fischerová, D. ; Testa, A.C. ; Moro, F. ; Buonomo, F. ; Valentin, L. ; Sladkevicius, P. ; Van Holsbeke, C. ; Kudla, M.J. ; Czekierdowski, A. ; Epstein, E. ; Groszmann, Y. ; Blaschko, M. ; De Moor, B. ; Van Calster, B. ; Timmerman, D. ; Froyman, W.</creator><creatorcontrib>Geysels, A. ; Garofalo, G. ; Timmerman, S. ; Ceusters, J. ; Fischerová, D. ; Testa, A.C. ; Moro, F. ; Buonomo, F. ; Valentin, L. ; Sladkevicius, P. ; Van Holsbeke, C. ; Kudla, M.J. ; Czekierdowski, A. ; Epstein, E. ; Groszmann, Y. ; Blaschko, M. ; De Moor, B. ; Van Calster, B. ; Timmerman, D. ; Froyman, W.</creatorcontrib><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.27750</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Deep learning ; Ovarian cancer</subject><ispartof>Ultrasound in obstetrics &amp; gynecology, 2024-09, Vol.64 (S1), p.13-13</ispartof><rights>The Authors 2024. © Ultrasound in Obstetrics &amp; Gynecology</rights><rights>Copyright © 2024 ISUOG. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fuog.27750$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fuog.27750$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Geysels, A.</creatorcontrib><creatorcontrib>Garofalo, G.</creatorcontrib><creatorcontrib>Timmerman, S.</creatorcontrib><creatorcontrib>Ceusters, J.</creatorcontrib><creatorcontrib>Fischerová, D.</creatorcontrib><creatorcontrib>Testa, A.C.</creatorcontrib><creatorcontrib>Moro, F.</creatorcontrib><creatorcontrib>Buonomo, F.</creatorcontrib><creatorcontrib>Valentin, L.</creatorcontrib><creatorcontrib>Sladkevicius, P.</creatorcontrib><creatorcontrib>Van Holsbeke, C.</creatorcontrib><creatorcontrib>Kudla, M.J.</creatorcontrib><creatorcontrib>Czekierdowski, A.</creatorcontrib><creatorcontrib>Epstein, E.</creatorcontrib><creatorcontrib>Groszmann, Y.</creatorcontrib><creatorcontrib>Blaschko, M.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><creatorcontrib>Van Calster, B.</creatorcontrib><creatorcontrib>Timmerman, D.</creatorcontrib><creatorcontrib>Froyman, W.</creatorcontrib><title>OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study</title><title>Ultrasound in obstetrics &amp; gynecology</title><subject>Deep learning</subject><subject>Ovarian cancer</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwkAQhjdGExE9-AabeDKxMN1tdyk3AogkRC6SeNtsd6dYLG3dthBuPoLP6JNYxKunOcw383_5Cbn1oecDsH5TrHtMyhDOSMcPROSBhPCcdCAS4EkRsUtyVVUbABABFx3yvhxD2AM-pBPEkmaoXZ7m6-_PL8x1nKGlxU67VOfU6NygoxZrNHVa5HSf1m90NHmevrb0aD6kmpauqMrjeocPdNtkdWowrx3Sqm7s4ZpcJDqr8OZvdsnqcfoyfvIWy9l8PFp4xgcGno7tIG71dDSIkQlmbRAmkZADHnMjmDRG-wzRD7m1EMsQeSJFEEShAGkEWN4ld6e_rc5Hg1WtNkXj8jZS8WNCCELylro_UaaVrhwmqnTpVruD8kEdu1Rtl-q3y5btn9h9muHhf1CtlrPTxQ8sUnZm</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Geysels, A.</creator><creator>Garofalo, G.</creator><creator>Timmerman, S.</creator><creator>Ceusters, J.</creator><creator>Fischerová, D.</creator><creator>Testa, A.C.</creator><creator>Moro, F.</creator><creator>Buonomo, F.</creator><creator>Valentin, L.</creator><creator>Sladkevicius, P.</creator><creator>Van Holsbeke, C.</creator><creator>Kudla, M.J.</creator><creator>Czekierdowski, A.</creator><creator>Epstein, E.</creator><creator>Groszmann, Y.</creator><creator>Blaschko, M.</creator><creator>De Moor, B.</creator><creator>Van Calster, B.</creator><creator>Timmerman, D.</creator><creator>Froyman, W.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>202409</creationdate><title>OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study</title><author>Geysels, A. ; Garofalo, G. ; Timmerman, S. ; Ceusters, J. ; Fischerová, D. ; Testa, A.C. ; Moro, F. ; Buonomo, F. ; Valentin, L. ; Sladkevicius, P. ; Van Holsbeke, C. ; Kudla, M.J. ; Czekierdowski, A. ; Epstein, E. ; Groszmann, Y. ; Blaschko, M. ; De Moor, B. ; Van Calster, B. ; Timmerman, D. ; Froyman, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1020-abd8b064a98be262dd45f96783b3c627cca12ee153dd0b75e3f764495607c60d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Ovarian cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geysels, A.</creatorcontrib><creatorcontrib>Garofalo, G.</creatorcontrib><creatorcontrib>Timmerman, S.</creatorcontrib><creatorcontrib>Ceusters, J.</creatorcontrib><creatorcontrib>Fischerová, D.</creatorcontrib><creatorcontrib>Testa, A.C.</creatorcontrib><creatorcontrib>Moro, F.</creatorcontrib><creatorcontrib>Buonomo, F.</creatorcontrib><creatorcontrib>Valentin, L.</creatorcontrib><creatorcontrib>Sladkevicius, P.</creatorcontrib><creatorcontrib>Van Holsbeke, C.</creatorcontrib><creatorcontrib>Kudla, M.J.</creatorcontrib><creatorcontrib>Czekierdowski, A.</creatorcontrib><creatorcontrib>Epstein, E.</creatorcontrib><creatorcontrib>Groszmann, Y.</creatorcontrib><creatorcontrib>Blaschko, M.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><creatorcontrib>Van Calster, B.</creatorcontrib><creatorcontrib>Timmerman, D.</creatorcontrib><creatorcontrib>Froyman, W.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geysels, A.</au><au>Garofalo, G.</au><au>Timmerman, S.</au><au>Ceusters, J.</au><au>Fischerová, D.</au><au>Testa, A.C.</au><au>Moro, F.</au><au>Buonomo, F.</au><au>Valentin, L.</au><au>Sladkevicius, P.</au><au>Van Holsbeke, C.</au><au>Kudla, M.J.</au><au>Czekierdowski, A.</au><au>Epstein, E.</au><au>Groszmann, Y.</au><au>Blaschko, M.</au><au>De Moor, B.</au><au>Van Calster, B.</au><au>Timmerman, D.</au><au>Froyman, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study</atitle><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>64</volume><issue>S1</issue><spage>13</spage><epage>13</epage><pages>13-13</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/uog.27750</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7692
ispartof Ultrasound in obstetrics & gynecology, 2024-09, Vol.64 (S1), p.13-13
issn 0960-7692
1469-0705
language eng
recordid cdi_proquest_journals_3102050673
source Wiley Online Library All Journals
subjects Deep learning
Ovarian cancer
title OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OC05.03:%20Deep%20learning%E2%80%90enabled%20ovarian%20cancer%20detection%20with%20ADNEX%E2%80%90AI:%20a%20prospective,%20multicentre%20study&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=Geysels,%20A.&rft.date=2024-09&rft.volume=64&rft.issue=S1&rft.spage=13&rft.epage=13&rft.pages=13-13&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.27750&rft_dat=%3Cproquest_cross%3E3102050673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102050673&rft_id=info:pmid/&rfr_iscdi=true