OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study
Gespeichert in:
Veröffentlicht in: | Ultrasound in obstetrics & gynecology 2024-09, Vol.64 (S1), p.13-13 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | S1 |
container_start_page | 13 |
container_title | Ultrasound in obstetrics & gynecology |
container_volume | 64 |
creator | Geysels, A. Garofalo, G. Timmerman, S. Ceusters, J. Fischerová, D. Testa, A.C. Moro, F. Buonomo, F. Valentin, L. Sladkevicius, P. Van Holsbeke, C. Kudla, M.J. Czekierdowski, A. Epstein, E. Groszmann, Y. Blaschko, M. De Moor, B. Van Calster, B. Timmerman, D. Froyman, W. |
description | |
doi_str_mv | 10.1002/uog.27750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102050673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102050673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1020-abd8b064a98be262dd45f96783b3c627cca12ee153dd0b75e3f764495607c60d3</originalsourceid><addsrcrecordid>eNp1kMFOwkAQhjdGExE9-AabeDKxMN1tdyk3AogkRC6SeNtsd6dYLG3dthBuPoLP6JNYxKunOcw383_5Cbn1oecDsH5TrHtMyhDOSMcPROSBhPCcdCAS4EkRsUtyVVUbABABFx3yvhxD2AM-pBPEkmaoXZ7m6-_PL8x1nKGlxU67VOfU6NygoxZrNHVa5HSf1m90NHmevrb0aD6kmpauqMrjeocPdNtkdWowrx3Sqm7s4ZpcJDqr8OZvdsnqcfoyfvIWy9l8PFp4xgcGno7tIG71dDSIkQlmbRAmkZADHnMjmDRG-wzRD7m1EMsQeSJFEEShAGkEWN4ld6e_rc5Hg1WtNkXj8jZS8WNCCELylro_UaaVrhwmqnTpVruD8kEdu1Rtl-q3y5btn9h9muHhf1CtlrPTxQ8sUnZm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102050673</pqid></control><display><type>article</type><title>OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study</title><source>Wiley Online Library All Journals</source><creator>Geysels, A. ; Garofalo, G. ; Timmerman, S. ; Ceusters, J. ; Fischerová, D. ; Testa, A.C. ; Moro, F. ; Buonomo, F. ; Valentin, L. ; Sladkevicius, P. ; Van Holsbeke, C. ; Kudla, M.J. ; Czekierdowski, A. ; Epstein, E. ; Groszmann, Y. ; Blaschko, M. ; De Moor, B. ; Van Calster, B. ; Timmerman, D. ; Froyman, W.</creator><creatorcontrib>Geysels, A. ; Garofalo, G. ; Timmerman, S. ; Ceusters, J. ; Fischerová, D. ; Testa, A.C. ; Moro, F. ; Buonomo, F. ; Valentin, L. ; Sladkevicius, P. ; Van Holsbeke, C. ; Kudla, M.J. ; Czekierdowski, A. ; Epstein, E. ; Groszmann, Y. ; Blaschko, M. ; De Moor, B. ; Van Calster, B. ; Timmerman, D. ; Froyman, W.</creatorcontrib><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.27750</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Deep learning ; Ovarian cancer</subject><ispartof>Ultrasound in obstetrics & gynecology, 2024-09, Vol.64 (S1), p.13-13</ispartof><rights>The Authors 2024. © Ultrasound in Obstetrics & Gynecology</rights><rights>Copyright © 2024 ISUOG. Published by John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fuog.27750$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fuog.27750$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Geysels, A.</creatorcontrib><creatorcontrib>Garofalo, G.</creatorcontrib><creatorcontrib>Timmerman, S.</creatorcontrib><creatorcontrib>Ceusters, J.</creatorcontrib><creatorcontrib>Fischerová, D.</creatorcontrib><creatorcontrib>Testa, A.C.</creatorcontrib><creatorcontrib>Moro, F.</creatorcontrib><creatorcontrib>Buonomo, F.</creatorcontrib><creatorcontrib>Valentin, L.</creatorcontrib><creatorcontrib>Sladkevicius, P.</creatorcontrib><creatorcontrib>Van Holsbeke, C.</creatorcontrib><creatorcontrib>Kudla, M.J.</creatorcontrib><creatorcontrib>Czekierdowski, A.</creatorcontrib><creatorcontrib>Epstein, E.</creatorcontrib><creatorcontrib>Groszmann, Y.</creatorcontrib><creatorcontrib>Blaschko, M.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><creatorcontrib>Van Calster, B.</creatorcontrib><creatorcontrib>Timmerman, D.</creatorcontrib><creatorcontrib>Froyman, W.</creatorcontrib><title>OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study</title><title>Ultrasound in obstetrics & gynecology</title><subject>Deep learning</subject><subject>Ovarian cancer</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwkAQhjdGExE9-AabeDKxMN1tdyk3AogkRC6SeNtsd6dYLG3dthBuPoLP6JNYxKunOcw383_5Cbn1oecDsH5TrHtMyhDOSMcPROSBhPCcdCAS4EkRsUtyVVUbABABFx3yvhxD2AM-pBPEkmaoXZ7m6-_PL8x1nKGlxU67VOfU6NygoxZrNHVa5HSf1m90NHmevrb0aD6kmpauqMrjeocPdNtkdWowrx3Sqm7s4ZpcJDqr8OZvdsnqcfoyfvIWy9l8PFp4xgcGno7tIG71dDSIkQlmbRAmkZADHnMjmDRG-wzRD7m1EMsQeSJFEEShAGkEWN4ld6e_rc5Hg1WtNkXj8jZS8WNCCELylro_UaaVrhwmqnTpVruD8kEdu1Rtl-q3y5btn9h9muHhf1CtlrPTxQ8sUnZm</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Geysels, A.</creator><creator>Garofalo, G.</creator><creator>Timmerman, S.</creator><creator>Ceusters, J.</creator><creator>Fischerová, D.</creator><creator>Testa, A.C.</creator><creator>Moro, F.</creator><creator>Buonomo, F.</creator><creator>Valentin, L.</creator><creator>Sladkevicius, P.</creator><creator>Van Holsbeke, C.</creator><creator>Kudla, M.J.</creator><creator>Czekierdowski, A.</creator><creator>Epstein, E.</creator><creator>Groszmann, Y.</creator><creator>Blaschko, M.</creator><creator>De Moor, B.</creator><creator>Van Calster, B.</creator><creator>Timmerman, D.</creator><creator>Froyman, W.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>202409</creationdate><title>OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study</title><author>Geysels, A. ; Garofalo, G. ; Timmerman, S. ; Ceusters, J. ; Fischerová, D. ; Testa, A.C. ; Moro, F. ; Buonomo, F. ; Valentin, L. ; Sladkevicius, P. ; Van Holsbeke, C. ; Kudla, M.J. ; Czekierdowski, A. ; Epstein, E. ; Groszmann, Y. ; Blaschko, M. ; De Moor, B. ; Van Calster, B. ; Timmerman, D. ; Froyman, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1020-abd8b064a98be262dd45f96783b3c627cca12ee153dd0b75e3f764495607c60d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Ovarian cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geysels, A.</creatorcontrib><creatorcontrib>Garofalo, G.</creatorcontrib><creatorcontrib>Timmerman, S.</creatorcontrib><creatorcontrib>Ceusters, J.</creatorcontrib><creatorcontrib>Fischerová, D.</creatorcontrib><creatorcontrib>Testa, A.C.</creatorcontrib><creatorcontrib>Moro, F.</creatorcontrib><creatorcontrib>Buonomo, F.</creatorcontrib><creatorcontrib>Valentin, L.</creatorcontrib><creatorcontrib>Sladkevicius, P.</creatorcontrib><creatorcontrib>Van Holsbeke, C.</creatorcontrib><creatorcontrib>Kudla, M.J.</creatorcontrib><creatorcontrib>Czekierdowski, A.</creatorcontrib><creatorcontrib>Epstein, E.</creatorcontrib><creatorcontrib>Groszmann, Y.</creatorcontrib><creatorcontrib>Blaschko, M.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><creatorcontrib>Van Calster, B.</creatorcontrib><creatorcontrib>Timmerman, D.</creatorcontrib><creatorcontrib>Froyman, W.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ultrasound in obstetrics & gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geysels, A.</au><au>Garofalo, G.</au><au>Timmerman, S.</au><au>Ceusters, J.</au><au>Fischerová, D.</au><au>Testa, A.C.</au><au>Moro, F.</au><au>Buonomo, F.</au><au>Valentin, L.</au><au>Sladkevicius, P.</au><au>Van Holsbeke, C.</au><au>Kudla, M.J.</au><au>Czekierdowski, A.</au><au>Epstein, E.</au><au>Groszmann, Y.</au><au>Blaschko, M.</au><au>De Moor, B.</au><au>Van Calster, B.</au><au>Timmerman, D.</au><au>Froyman, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study</atitle><jtitle>Ultrasound in obstetrics & gynecology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>64</volume><issue>S1</issue><spage>13</spage><epage>13</epage><pages>13-13</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/uog.27750</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7692 |
ispartof | Ultrasound in obstetrics & gynecology, 2024-09, Vol.64 (S1), p.13-13 |
issn | 0960-7692 1469-0705 |
language | eng |
recordid | cdi_proquest_journals_3102050673 |
source | Wiley Online Library All Journals |
subjects | Deep learning Ovarian cancer |
title | OC05.03: Deep learning‐enabled ovarian cancer detection with ADNEX‐AI: a prospective, multicentre study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OC05.03:%20Deep%20learning%E2%80%90enabled%20ovarian%20cancer%20detection%20with%20ADNEX%E2%80%90AI:%20a%20prospective,%20multicentre%20study&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=Geysels,%20A.&rft.date=2024-09&rft.volume=64&rft.issue=S1&rft.spage=13&rft.epage=13&rft.pages=13-13&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.27750&rft_dat=%3Cproquest_cross%3E3102050673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102050673&rft_id=info:pmid/&rfr_iscdi=true |