Generalized Effective-Field Approximation for Inhomogeneous Medium with Inclusions in Multilayered Shells
An approach is proposed for calculating effective physical characteristics of a inhomogeneous medium with several levels of nesting of its microstructure—the generalized effective-field approximation. With the help of this approach, an expression is obtained for an effective permittivity tensor of a...
Gespeichert in:
Veröffentlicht in: | Technical physics 2024-01, Vol.69 (4), p.934-944 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 944 |
---|---|
container_issue | 4 |
container_start_page | 934 |
container_title | Technical physics |
container_volume | 69 |
creator | Lavrov, I. V. Bardushkin, V. V. Yakovlev, V. B. |
description | An approach is proposed for calculating effective physical characteristics of a inhomogeneous medium with several levels of nesting of its microstructure—the generalized effective-field approximation. With the help of this approach, an expression is obtained for an effective permittivity tensor of an inhomogeneous medium with ellipsoidal inclusions in a multilayered shell, the boundaries of all layers of which are ellipsoids. The proposed approach allows to take into account probabilistic distributions of orientations and forms of inclusions, as well as the presence of several types of inclusions. Two cases of matrix composites are considered: (1) with spherical isotropic inclusions with a multilayered shell; (2) with ellipsoidal anisotropic inclusions with a multilayered shell. For an inhomogeneous medium with homogeneous inclusions, this approximation is shown to produce the same result as the generalized singular approximation. |
doi_str_mv | 10.1134/S1063784224030228 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3101788734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A808917288</galeid><sourcerecordid>A808917288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-6fcb3c469954f1ef5b575fa62d6faadd66fa55510fea2ed9d22531383fa1fa803</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhisEEmPwA7hV4tyRjyZNj9O0jUmbOAzOVdY4W6asGUkLjF9PpiJxQMgHW_b72JadJPcYjTCm-eMaI04LkROSI4oIERfJAKMSZZwRdnmOOc3O9evkJoQ9QhgLxgeJmUMDXlrzBSqdag11a94hmxmwKh0fj959moNsjWtS7Xy6aHbu4LaRcV1IV6BMd0g_TLuLldp2IepCapp01dnWWHkCH9uud2BtuE2utLQB7n78MHmdTV8mT9nyeb6YjJdZTWjRZlzXG1rnvCxZrjFotmEF05ITxbWUSvHoGGMYaZAEVKkIYRRTQbXEWgpEh8lD3zfu_tZBaKu963wTR1YUI1wIUdA8qka9aistVKbRrvWyjqbgYGrXgDYxPxZIlLggQkQA90DtXQgedHX08TL-VGFUnV9Q_XlBZEjPhKhttuB_V_kf-gYmDYmO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101788734</pqid></control><display><type>article</type><title>Generalized Effective-Field Approximation for Inhomogeneous Medium with Inclusions in Multilayered Shells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lavrov, I. V. ; Bardushkin, V. V. ; Yakovlev, V. B.</creator><creatorcontrib>Lavrov, I. V. ; Bardushkin, V. V. ; Yakovlev, V. B.</creatorcontrib><description>An approach is proposed for calculating effective physical characteristics of a inhomogeneous medium with several levels of nesting of its microstructure—the generalized effective-field approximation. With the help of this approach, an expression is obtained for an effective permittivity tensor of an inhomogeneous medium with ellipsoidal inclusions in a multilayered shell, the boundaries of all layers of which are ellipsoids. The proposed approach allows to take into account probabilistic distributions of orientations and forms of inclusions, as well as the presence of several types of inclusions. Two cases of matrix composites are considered: (1) with spherical isotropic inclusions with a multilayered shell; (2) with ellipsoidal anisotropic inclusions with a multilayered shell. For an inhomogeneous medium with homogeneous inclusions, this approximation is shown to produce the same result as the generalized singular approximation.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784224030228</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Approximation ; Classical and Continuum Physics ; Ellipsoids ; Inclusions ; Inhomogeneous media ; Mathematical analysis ; Physical properties ; Physics ; Physics and Astronomy ; Spherical shells ; Tensors</subject><ispartof>Technical physics, 2024-01, Vol.69 (4), p.934-944</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7842, Technical Physics, 2024, Vol. 69, No. 4, pp. 934–944. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2022, published in Zhurnal Tekhnicheskoi Fiziki, 2022, Vol. 92, No. 11, pp. 1632–1642. English Text © Ioffe Institute, 2022.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-6fcb3c469954f1ef5b575fa62d6faadd66fa55510fea2ed9d22531383fa1fa803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063784224030228$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063784224030228$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Lavrov, I. V.</creatorcontrib><creatorcontrib>Bardushkin, V. V.</creatorcontrib><creatorcontrib>Yakovlev, V. B.</creatorcontrib><title>Generalized Effective-Field Approximation for Inhomogeneous Medium with Inclusions in Multilayered Shells</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>An approach is proposed for calculating effective physical characteristics of a inhomogeneous medium with several levels of nesting of its microstructure—the generalized effective-field approximation. With the help of this approach, an expression is obtained for an effective permittivity tensor of an inhomogeneous medium with ellipsoidal inclusions in a multilayered shell, the boundaries of all layers of which are ellipsoids. The proposed approach allows to take into account probabilistic distributions of orientations and forms of inclusions, as well as the presence of several types of inclusions. Two cases of matrix composites are considered: (1) with spherical isotropic inclusions with a multilayered shell; (2) with ellipsoidal anisotropic inclusions with a multilayered shell. For an inhomogeneous medium with homogeneous inclusions, this approximation is shown to produce the same result as the generalized singular approximation.</description><subject>Approximation</subject><subject>Classical and Continuum Physics</subject><subject>Ellipsoids</subject><subject>Inclusions</subject><subject>Inhomogeneous media</subject><subject>Mathematical analysis</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spherical shells</subject><subject>Tensors</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PwzAMhisEEmPwA7hV4tyRjyZNj9O0jUmbOAzOVdY4W6asGUkLjF9PpiJxQMgHW_b72JadJPcYjTCm-eMaI04LkROSI4oIERfJAKMSZZwRdnmOOc3O9evkJoQ9QhgLxgeJmUMDXlrzBSqdag11a94hmxmwKh0fj959moNsjWtS7Xy6aHbu4LaRcV1IV6BMd0g_TLuLldp2IepCapp01dnWWHkCH9uud2BtuE2utLQB7n78MHmdTV8mT9nyeb6YjJdZTWjRZlzXG1rnvCxZrjFotmEF05ITxbWUSvHoGGMYaZAEVKkIYRRTQbXEWgpEh8lD3zfu_tZBaKu963wTR1YUI1wIUdA8qka9aistVKbRrvWyjqbgYGrXgDYxPxZIlLggQkQA90DtXQgedHX08TL-VGFUnV9Q_XlBZEjPhKhttuB_V_kf-gYmDYmO</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lavrov, I. V.</creator><creator>Bardushkin, V. V.</creator><creator>Yakovlev, V. B.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>Generalized Effective-Field Approximation for Inhomogeneous Medium with Inclusions in Multilayered Shells</title><author>Lavrov, I. V. ; Bardushkin, V. V. ; Yakovlev, V. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-6fcb3c469954f1ef5b575fa62d6faadd66fa55510fea2ed9d22531383fa1fa803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Classical and Continuum Physics</topic><topic>Ellipsoids</topic><topic>Inclusions</topic><topic>Inhomogeneous media</topic><topic>Mathematical analysis</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spherical shells</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavrov, I. V.</creatorcontrib><creatorcontrib>Bardushkin, V. V.</creatorcontrib><creatorcontrib>Yakovlev, V. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavrov, I. V.</au><au>Bardushkin, V. V.</au><au>Yakovlev, V. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Effective-Field Approximation for Inhomogeneous Medium with Inclusions in Multilayered Shells</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>69</volume><issue>4</issue><spage>934</spage><epage>944</epage><pages>934-944</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>An approach is proposed for calculating effective physical characteristics of a inhomogeneous medium with several levels of nesting of its microstructure—the generalized effective-field approximation. With the help of this approach, an expression is obtained for an effective permittivity tensor of an inhomogeneous medium with ellipsoidal inclusions in a multilayered shell, the boundaries of all layers of which are ellipsoids. The proposed approach allows to take into account probabilistic distributions of orientations and forms of inclusions, as well as the presence of several types of inclusions. Two cases of matrix composites are considered: (1) with spherical isotropic inclusions with a multilayered shell; (2) with ellipsoidal anisotropic inclusions with a multilayered shell. For an inhomogeneous medium with homogeneous inclusions, this approximation is shown to produce the same result as the generalized singular approximation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784224030228</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7842 |
ispartof | Technical physics, 2024-01, Vol.69 (4), p.934-944 |
issn | 1063-7842 1090-6525 |
language | eng |
recordid | cdi_proquest_journals_3101788734 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Classical and Continuum Physics Ellipsoids Inclusions Inhomogeneous media Mathematical analysis Physical properties Physics Physics and Astronomy Spherical shells Tensors |
title | Generalized Effective-Field Approximation for Inhomogeneous Medium with Inclusions in Multilayered Shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Effective-Field%20Approximation%20for%20Inhomogeneous%20Medium%20with%20Inclusions%20in%20Multilayered%20Shells&rft.jtitle=Technical%20physics&rft.au=Lavrov,%20I.%20V.&rft.date=2024-01-01&rft.volume=69&rft.issue=4&rft.spage=934&rft.epage=944&rft.pages=934-944&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784224030228&rft_dat=%3Cgale_proqu%3EA808917288%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101788734&rft_id=info:pmid/&rft_galeid=A808917288&rfr_iscdi=true |