Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel
In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder fee...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2024-10, Vol.55 (10), p.3982-4000 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4000 |
---|---|
container_issue | 10 |
container_start_page | 3982 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 55 |
creator | Anishetty, Sharath Bera, Tapas Majumdar, Jyotsna Dutta Manna, Indranil |
description | In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder feed rate of 50 g/min. The clad zone was thoroughly investigated in terms of microstructure, phase, micro and nanohardness, and mechanical and electrochemical properties and correlated with input LDED parameters to determine the optimum process window. The samples processed under optimal process parameters were subjected to tensile testing, followed by a detailed study of the fractured surface to determine the mechanism of tensile deformation and failure. LDED leads to microstructural refinement and, hence, increases its microhardness in comparison with base plate. The wear (against the WC ball in fretting mode) and corrosion resistance (in a 3.56 wt pct NaCl solution) were improved for LDED coupons in comparison with that of the wrought alloy. Tensile behavior shows a marginal increase in yield strength and ultimate tensile strength in addition to ductility as compared to wrought alloy.
Graphical Abstract |
doi_str_mv | 10.1007/s11661-024-07517-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3101654597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101654597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ca9e959f51ed30989d5df83e5d9e78f0b51c00f0470bd0aef4fa8b07f3c845773</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFPAc_SlaZrmOLapg4nC9Byy9GXr6NqadId9e7tV8Obp_Xn8_u_Bj5B7Do8cQD1FzrOMM0hSBkpyxZILMuIyFYzrFC77DEowmSXimtzEuAMArkU2Iu2qOxQlRtrU9A3d1talsxW1dUHnFbouNGy6xf15-RGaFkN3pj1d2oiBzsrQU3ReY9gc2QzbJpYdFnSyWC2o4NmSrjpb1hXG2CfE6pZceVtFvPudY_L1PP-cvrLl-8tiOlkylwB0zFmNWmovORYCdK4LWfhcoCw0qtzDWnIH4CFVsC7Aok-9zdegvHB5KpUSY_Iw3G1D833A2Jldcwh1_9IIDjyTqdQnKhkoF5oYA3rThnJvw9FwMCezZjBrerPmbNYkfUkMpdjD9QbD3-l_Wj_FYHtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101654597</pqid></control><display><type>article</type><title>Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel</title><source>SpringerLink (Online service)</source><creator>Anishetty, Sharath ; Bera, Tapas ; Majumdar, Jyotsna Dutta ; Manna, Indranil</creator><creatorcontrib>Anishetty, Sharath ; Bera, Tapas ; Majumdar, Jyotsna Dutta ; Manna, Indranil</creatorcontrib><description>In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder feed rate of 50 g/min. The clad zone was thoroughly investigated in terms of microstructure, phase, micro and nanohardness, and mechanical and electrochemical properties and correlated with input LDED parameters to determine the optimum process window. The samples processed under optimal process parameters were subjected to tensile testing, followed by a detailed study of the fractured surface to determine the mechanism of tensile deformation and failure. LDED leads to microstructural refinement and, hence, increases its microhardness in comparison with base plate. The wear (against the WC ball in fretting mode) and corrosion resistance (in a 3.56 wt pct NaCl solution) were improved for LDED coupons in comparison with that of the wrought alloy. Tensile behavior shows a marginal increase in yield strength and ultimate tensile strength in addition to ductility as compared to wrought alloy.
Graphical Abstract</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-024-07517-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Austenitic stainless steels ; Base plates ; Characterization and Evaluation of Materials ; Chemical properties ; Chemistry and Materials Science ; Corrosion mechanisms ; Corrosion resistance ; Corrosive wear ; Deformation mechanisms ; Deformation wear ; Electrochemical analysis ; Feed rate ; Lasers ; Materials Science ; Metallic Materials ; Microhardness ; Microstructure ; Nanohardness ; Nanotechnology ; Optimization ; Original Research Article ; Process parameters ; Semiconductor lasers ; Stainless steel ; Structural Materials ; Surfaces and Interfaces ; Tensile deformation ; Tensile tests ; Thin Films ; Ultimate tensile strength ; Wear resistance ; Wrought alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-10, Vol.55 (10), p.3982-4000</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ca9e959f51ed30989d5df83e5d9e78f0b51c00f0470bd0aef4fa8b07f3c845773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-024-07517-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-024-07517-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Anishetty, Sharath</creatorcontrib><creatorcontrib>Bera, Tapas</creatorcontrib><creatorcontrib>Majumdar, Jyotsna Dutta</creatorcontrib><creatorcontrib>Manna, Indranil</creatorcontrib><title>Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder feed rate of 50 g/min. The clad zone was thoroughly investigated in terms of microstructure, phase, micro and nanohardness, and mechanical and electrochemical properties and correlated with input LDED parameters to determine the optimum process window. The samples processed under optimal process parameters were subjected to tensile testing, followed by a detailed study of the fractured surface to determine the mechanism of tensile deformation and failure. LDED leads to microstructural refinement and, hence, increases its microhardness in comparison with base plate. The wear (against the WC ball in fretting mode) and corrosion resistance (in a 3.56 wt pct NaCl solution) were improved for LDED coupons in comparison with that of the wrought alloy. Tensile behavior shows a marginal increase in yield strength and ultimate tensile strength in addition to ductility as compared to wrought alloy.
Graphical Abstract</description><subject>Austenitic stainless steels</subject><subject>Base plates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical properties</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion mechanisms</subject><subject>Corrosion resistance</subject><subject>Corrosive wear</subject><subject>Deformation mechanisms</subject><subject>Deformation wear</subject><subject>Electrochemical analysis</subject><subject>Feed rate</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Nanohardness</subject><subject>Nanotechnology</subject><subject>Optimization</subject><subject>Original Research Article</subject><subject>Process parameters</subject><subject>Semiconductor lasers</subject><subject>Stainless steel</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tensile deformation</subject><subject>Tensile tests</subject><subject>Thin Films</subject><subject>Ultimate tensile strength</subject><subject>Wear resistance</subject><subject>Wrought alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKdfwFPAc_SlaZrmOLapg4nC9Byy9GXr6NqadId9e7tV8Obp_Xn8_u_Bj5B7Do8cQD1FzrOMM0hSBkpyxZILMuIyFYzrFC77DEowmSXimtzEuAMArkU2Iu2qOxQlRtrU9A3d1talsxW1dUHnFbouNGy6xf15-RGaFkN3pj1d2oiBzsrQU3ReY9gc2QzbJpYdFnSyWC2o4NmSrjpb1hXG2CfE6pZceVtFvPudY_L1PP-cvrLl-8tiOlkylwB0zFmNWmovORYCdK4LWfhcoCw0qtzDWnIH4CFVsC7Aok-9zdegvHB5KpUSY_Iw3G1D833A2Jldcwh1_9IIDjyTqdQnKhkoF5oYA3rThnJvw9FwMCezZjBrerPmbNYkfUkMpdjD9QbD3-l_Wj_FYHtA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Anishetty, Sharath</creator><creator>Bera, Tapas</creator><creator>Majumdar, Jyotsna Dutta</creator><creator>Manna, Indranil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241001</creationdate><title>Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel</title><author>Anishetty, Sharath ; Bera, Tapas ; Majumdar, Jyotsna Dutta ; Manna, Indranil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ca9e959f51ed30989d5df83e5d9e78f0b51c00f0470bd0aef4fa8b07f3c845773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Austenitic stainless steels</topic><topic>Base plates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical properties</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion mechanisms</topic><topic>Corrosion resistance</topic><topic>Corrosive wear</topic><topic>Deformation mechanisms</topic><topic>Deformation wear</topic><topic>Electrochemical analysis</topic><topic>Feed rate</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Nanohardness</topic><topic>Nanotechnology</topic><topic>Optimization</topic><topic>Original Research Article</topic><topic>Process parameters</topic><topic>Semiconductor lasers</topic><topic>Stainless steel</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tensile deformation</topic><topic>Tensile tests</topic><topic>Thin Films</topic><topic>Ultimate tensile strength</topic><topic>Wear resistance</topic><topic>Wrought alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anishetty, Sharath</creatorcontrib><creatorcontrib>Bera, Tapas</creatorcontrib><creatorcontrib>Majumdar, Jyotsna Dutta</creatorcontrib><creatorcontrib>Manna, Indranil</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anishetty, Sharath</au><au>Bera, Tapas</au><au>Majumdar, Jyotsna Dutta</au><au>Manna, Indranil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>55</volume><issue>10</issue><spage>3982</spage><epage>4000</epage><pages>3982-4000</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder feed rate of 50 g/min. The clad zone was thoroughly investigated in terms of microstructure, phase, micro and nanohardness, and mechanical and electrochemical properties and correlated with input LDED parameters to determine the optimum process window. The samples processed under optimal process parameters were subjected to tensile testing, followed by a detailed study of the fractured surface to determine the mechanism of tensile deformation and failure. LDED leads to microstructural refinement and, hence, increases its microhardness in comparison with base plate. The wear (against the WC ball in fretting mode) and corrosion resistance (in a 3.56 wt pct NaCl solution) were improved for LDED coupons in comparison with that of the wrought alloy. Tensile behavior shows a marginal increase in yield strength and ultimate tensile strength in addition to ductility as compared to wrought alloy.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-024-07517-2</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-10, Vol.55 (10), p.3982-4000 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_3101654597 |
source | SpringerLink (Online service) |
subjects | Austenitic stainless steels Base plates Characterization and Evaluation of Materials Chemical properties Chemistry and Materials Science Corrosion mechanisms Corrosion resistance Corrosive wear Deformation mechanisms Deformation wear Electrochemical analysis Feed rate Lasers Materials Science Metallic Materials Microhardness Microstructure Nanohardness Nanotechnology Optimization Original Research Article Process parameters Semiconductor lasers Stainless steel Structural Materials Surfaces and Interfaces Tensile deformation Tensile tests Thin Films Ultimate tensile strength Wear resistance Wrought alloys |
title | Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20on%20Mechanical%20and%20Electro-Chemical%20Properties%20of%20Laser%20Direct%20Energy-Deposited%20AISI%20316L%20Stainless%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Anishetty,%20Sharath&rft.date=2024-10-01&rft.volume=55&rft.issue=10&rft.spage=3982&rft.epage=4000&rft.pages=3982-4000&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-024-07517-2&rft_dat=%3Cproquest_cross%3E3101654597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101654597&rft_id=info:pmid/&rfr_iscdi=true |