Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel

In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder fee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2024-10, Vol.55 (10), p.3982-4000
Hauptverfasser: Anishetty, Sharath, Bera, Tapas, Majumdar, Jyotsna Dutta, Manna, Indranil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4000
container_issue 10
container_start_page 3982
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 55
creator Anishetty, Sharath
Bera, Tapas
Majumdar, Jyotsna Dutta
Manna, Indranil
description In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder feed rate of 50 g/min. The clad zone was thoroughly investigated in terms of microstructure, phase, micro and nanohardness, and mechanical and electrochemical properties and correlated with input LDED parameters to determine the optimum process window. The samples processed under optimal process parameters were subjected to tensile testing, followed by a detailed study of the fractured surface to determine the mechanism of tensile deformation and failure. LDED leads to microstructural refinement and, hence, increases its microhardness in comparison with base plate. The wear (against the WC ball in fretting mode) and corrosion resistance (in a 3.56 wt pct NaCl solution) were improved for LDED coupons in comparison with that of the wrought alloy. Tensile behavior shows a marginal increase in yield strength and ultimate tensile strength in addition to ductility as compared to wrought alloy. Graphical Abstract
doi_str_mv 10.1007/s11661-024-07517-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3101654597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101654597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ca9e959f51ed30989d5df83e5d9e78f0b51c00f0470bd0aef4fa8b07f3c845773</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFPAc_SlaZrmOLapg4nC9Byy9GXr6NqadId9e7tV8Obp_Xn8_u_Bj5B7Do8cQD1FzrOMM0hSBkpyxZILMuIyFYzrFC77DEowmSXimtzEuAMArkU2Iu2qOxQlRtrU9A3d1talsxW1dUHnFbouNGy6xf15-RGaFkN3pj1d2oiBzsrQU3ReY9gc2QzbJpYdFnSyWC2o4NmSrjpb1hXG2CfE6pZceVtFvPudY_L1PP-cvrLl-8tiOlkylwB0zFmNWmovORYCdK4LWfhcoCw0qtzDWnIH4CFVsC7Aok-9zdegvHB5KpUSY_Iw3G1D833A2Jldcwh1_9IIDjyTqdQnKhkoF5oYA3rThnJvw9FwMCezZjBrerPmbNYkfUkMpdjD9QbD3-l_Wj_FYHtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101654597</pqid></control><display><type>article</type><title>Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel</title><source>SpringerLink (Online service)</source><creator>Anishetty, Sharath ; Bera, Tapas ; Majumdar, Jyotsna Dutta ; Manna, Indranil</creator><creatorcontrib>Anishetty, Sharath ; Bera, Tapas ; Majumdar, Jyotsna Dutta ; Manna, Indranil</creatorcontrib><description>In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder feed rate of 50 g/min. The clad zone was thoroughly investigated in terms of microstructure, phase, micro and nanohardness, and mechanical and electrochemical properties and correlated with input LDED parameters to determine the optimum process window. The samples processed under optimal process parameters were subjected to tensile testing, followed by a detailed study of the fractured surface to determine the mechanism of tensile deformation and failure. LDED leads to microstructural refinement and, hence, increases its microhardness in comparison with base plate. The wear (against the WC ball in fretting mode) and corrosion resistance (in a 3.56 wt pct NaCl solution) were improved for LDED coupons in comparison with that of the wrought alloy. Tensile behavior shows a marginal increase in yield strength and ultimate tensile strength in addition to ductility as compared to wrought alloy. Graphical Abstract</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-024-07517-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Austenitic stainless steels ; Base plates ; Characterization and Evaluation of Materials ; Chemical properties ; Chemistry and Materials Science ; Corrosion mechanisms ; Corrosion resistance ; Corrosive wear ; Deformation mechanisms ; Deformation wear ; Electrochemical analysis ; Feed rate ; Lasers ; Materials Science ; Metallic Materials ; Microhardness ; Microstructure ; Nanohardness ; Nanotechnology ; Optimization ; Original Research Article ; Process parameters ; Semiconductor lasers ; Stainless steel ; Structural Materials ; Surfaces and Interfaces ; Tensile deformation ; Tensile tests ; Thin Films ; Ultimate tensile strength ; Wear resistance ; Wrought alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-10, Vol.55 (10), p.3982-4000</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ca9e959f51ed30989d5df83e5d9e78f0b51c00f0470bd0aef4fa8b07f3c845773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-024-07517-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-024-07517-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Anishetty, Sharath</creatorcontrib><creatorcontrib>Bera, Tapas</creatorcontrib><creatorcontrib>Majumdar, Jyotsna Dutta</creatorcontrib><creatorcontrib>Manna, Indranil</creatorcontrib><title>Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder feed rate of 50 g/min. The clad zone was thoroughly investigated in terms of microstructure, phase, micro and nanohardness, and mechanical and electrochemical properties and correlated with input LDED parameters to determine the optimum process window. The samples processed under optimal process parameters were subjected to tensile testing, followed by a detailed study of the fractured surface to determine the mechanism of tensile deformation and failure. LDED leads to microstructural refinement and, hence, increases its microhardness in comparison with base plate. The wear (against the WC ball in fretting mode) and corrosion resistance (in a 3.56 wt pct NaCl solution) were improved for LDED coupons in comparison with that of the wrought alloy. Tensile behavior shows a marginal increase in yield strength and ultimate tensile strength in addition to ductility as compared to wrought alloy. Graphical Abstract</description><subject>Austenitic stainless steels</subject><subject>Base plates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical properties</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion mechanisms</subject><subject>Corrosion resistance</subject><subject>Corrosive wear</subject><subject>Deformation mechanisms</subject><subject>Deformation wear</subject><subject>Electrochemical analysis</subject><subject>Feed rate</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Nanohardness</subject><subject>Nanotechnology</subject><subject>Optimization</subject><subject>Original Research Article</subject><subject>Process parameters</subject><subject>Semiconductor lasers</subject><subject>Stainless steel</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tensile deformation</subject><subject>Tensile tests</subject><subject>Thin Films</subject><subject>Ultimate tensile strength</subject><subject>Wear resistance</subject><subject>Wrought alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKdfwFPAc_SlaZrmOLapg4nC9Byy9GXr6NqadId9e7tV8Obp_Xn8_u_Bj5B7Do8cQD1FzrOMM0hSBkpyxZILMuIyFYzrFC77DEowmSXimtzEuAMArkU2Iu2qOxQlRtrU9A3d1talsxW1dUHnFbouNGy6xf15-RGaFkN3pj1d2oiBzsrQU3ReY9gc2QzbJpYdFnSyWC2o4NmSrjpb1hXG2CfE6pZceVtFvPudY_L1PP-cvrLl-8tiOlkylwB0zFmNWmovORYCdK4LWfhcoCw0qtzDWnIH4CFVsC7Aok-9zdegvHB5KpUSY_Iw3G1D833A2Jldcwh1_9IIDjyTqdQnKhkoF5oYA3rThnJvw9FwMCezZjBrerPmbNYkfUkMpdjD9QbD3-l_Wj_FYHtA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Anishetty, Sharath</creator><creator>Bera, Tapas</creator><creator>Majumdar, Jyotsna Dutta</creator><creator>Manna, Indranil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241001</creationdate><title>Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel</title><author>Anishetty, Sharath ; Bera, Tapas ; Majumdar, Jyotsna Dutta ; Manna, Indranil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ca9e959f51ed30989d5df83e5d9e78f0b51c00f0470bd0aef4fa8b07f3c845773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Austenitic stainless steels</topic><topic>Base plates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical properties</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion mechanisms</topic><topic>Corrosion resistance</topic><topic>Corrosive wear</topic><topic>Deformation mechanisms</topic><topic>Deformation wear</topic><topic>Electrochemical analysis</topic><topic>Feed rate</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Nanohardness</topic><topic>Nanotechnology</topic><topic>Optimization</topic><topic>Original Research Article</topic><topic>Process parameters</topic><topic>Semiconductor lasers</topic><topic>Stainless steel</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tensile deformation</topic><topic>Tensile tests</topic><topic>Thin Films</topic><topic>Ultimate tensile strength</topic><topic>Wear resistance</topic><topic>Wrought alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anishetty, Sharath</creatorcontrib><creatorcontrib>Bera, Tapas</creatorcontrib><creatorcontrib>Majumdar, Jyotsna Dutta</creatorcontrib><creatorcontrib>Manna, Indranil</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anishetty, Sharath</au><au>Bera, Tapas</au><au>Majumdar, Jyotsna Dutta</au><au>Manna, Indranil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>55</volume><issue>10</issue><spage>3982</spage><epage>4000</epage><pages>3982-4000</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>In this study, austenitic stainless steel (AISI 316L grade) coupon samples were developed by laser direct energy deposition (LDED) technique (using a 6 kW fiber-coupled diode laser with a wavelength of 1000 and 3.6 mm beam diameter) with 600–1000 W power input and 2–5 mm/s scan speed at a powder feed rate of 50 g/min. The clad zone was thoroughly investigated in terms of microstructure, phase, micro and nanohardness, and mechanical and electrochemical properties and correlated with input LDED parameters to determine the optimum process window. The samples processed under optimal process parameters were subjected to tensile testing, followed by a detailed study of the fractured surface to determine the mechanism of tensile deformation and failure. LDED leads to microstructural refinement and, hence, increases its microhardness in comparison with base plate. The wear (against the WC ball in fretting mode) and corrosion resistance (in a 3.56 wt pct NaCl solution) were improved for LDED coupons in comparison with that of the wrought alloy. Tensile behavior shows a marginal increase in yield strength and ultimate tensile strength in addition to ductility as compared to wrought alloy. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-024-07517-2</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-10, Vol.55 (10), p.3982-4000
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_3101654597
source SpringerLink (Online service)
subjects Austenitic stainless steels
Base plates
Characterization and Evaluation of Materials
Chemical properties
Chemistry and Materials Science
Corrosion mechanisms
Corrosion resistance
Corrosive wear
Deformation mechanisms
Deformation wear
Electrochemical analysis
Feed rate
Lasers
Materials Science
Metallic Materials
Microhardness
Microstructure
Nanohardness
Nanotechnology
Optimization
Original Research Article
Process parameters
Semiconductor lasers
Stainless steel
Structural Materials
Surfaces and Interfaces
Tensile deformation
Tensile tests
Thin Films
Ultimate tensile strength
Wear resistance
Wrought alloys
title Studies on Mechanical and Electro-Chemical Properties of Laser Direct Energy-Deposited AISI 316L Stainless Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20on%20Mechanical%20and%20Electro-Chemical%20Properties%20of%20Laser%20Direct%20Energy-Deposited%20AISI%20316L%20Stainless%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Anishetty,%20Sharath&rft.date=2024-10-01&rft.volume=55&rft.issue=10&rft.spage=3982&rft.epage=4000&rft.pages=3982-4000&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-024-07517-2&rft_dat=%3Cproquest_cross%3E3101654597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101654597&rft_id=info:pmid/&rfr_iscdi=true