An Edge-Preserving Regularization Model for the Demosaicing of Noisy Color Images
This paper proposes an edge-preserving regularization technique to solve the color image demosaicing problem in the realistic case of noisy data. We enforce intra-channel local smoothness of the intensity (low-frequency components) and inter-channel local similarity of the depth of object borders an...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical imaging and vision 2024-10, Vol.66 (5), p.904-925 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 925 |
---|---|
container_issue | 5 |
container_start_page | 904 |
container_title | Journal of mathematical imaging and vision |
container_volume | 66 |
creator | Boccuto, Antonio Gerace, Ivan Giorgetti, Valentina Martinelli, Francesca Tonazzini, Anna |
description | This paper proposes an edge-preserving regularization technique to solve the color image demosaicing problem in the realistic case of noisy data. We enforce intra-channel local smoothness of the intensity (low-frequency components) and inter-channel local similarity of the depth of object borders and textures (high-frequency components). Discontinuities of both the low-frequency and high-frequency components are accounted for implicitly, i.e., through suitable functions of the proper derivatives. For the treatment of even the finest image details, derivatives of first, second, and third orders are considered. The solution to the demosaicing problem is defined as the minimizer of an energy function, accounting for all these constraints plus a data fidelity term. This non-convex energy is minimized via an iterative deterministic algorithm, applied to a family of approximating functions, each implicitly referring to geometrically consistent image edges. Our method is general because it does not refer to any specific color filter array. However, to allow quantitative comparisons with other published results, we tested it in the case of the Bayer CFA and on the Kodak 24-image dataset, the McMaster (IMAX) 18-image dataset, the Microsoft Demosaicing Canon 57-image dataset, and the Microsoft Demosaicing Panasonic 500-image dataset. The comparisons with some of the most recent demosaicing algorithms show the good performance of our method in both the noiseless and noisy cases. |
doi_str_mv | 10.1007/s10851-024-01204-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3101543085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101543085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-55e8998742e5d42a974dc15464ffc8d8781283a176bc1a8f2a7314530cdb1b8a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMX7WzrEqBSuUpWFtu4oRUaVzsFCl8PS5BYsdqFvfcO9JB6JzCJQVQV5GClpQAEwQoA0H6AzSiUnGiJpofohFkKcoyUMfoJMY1AGhG1Qg9T1s8LypHnoKLLnzWbYVfXLVrbKi_bFf7Ft_7wjW49AF37w5fu42Pts73oC_xg69jj2e-SfFiYysXT9FRaZvozn7vGL3dzF9nd2T5eLuYTZckZ0J0REqns0wrwZwsBLOZEkVOpZiIssx1oZWmTHNL1WSVU6tLZhWnQnLIixVdacvH6GLY3Qb_sXOxM2u_C216aTiFtMSTkkSxgcqDjzG40mxDvbGhNxTMXp0Z1JmkzvyoM30q8aEUE9xWLvxN_9P6BscNcLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101543085</pqid></control><display><type>article</type><title>An Edge-Preserving Regularization Model for the Demosaicing of Noisy Color Images</title><source>SpringerNature Journals</source><creator>Boccuto, Antonio ; Gerace, Ivan ; Giorgetti, Valentina ; Martinelli, Francesca ; Tonazzini, Anna</creator><creatorcontrib>Boccuto, Antonio ; Gerace, Ivan ; Giorgetti, Valentina ; Martinelli, Francesca ; Tonazzini, Anna</creatorcontrib><description>This paper proposes an edge-preserving regularization technique to solve the color image demosaicing problem in the realistic case of noisy data. We enforce intra-channel local smoothness of the intensity (low-frequency components) and inter-channel local similarity of the depth of object borders and textures (high-frequency components). Discontinuities of both the low-frequency and high-frequency components are accounted for implicitly, i.e., through suitable functions of the proper derivatives. For the treatment of even the finest image details, derivatives of first, second, and third orders are considered. The solution to the demosaicing problem is defined as the minimizer of an energy function, accounting for all these constraints plus a data fidelity term. This non-convex energy is minimized via an iterative deterministic algorithm, applied to a family of approximating functions, each implicitly referring to geometrically consistent image edges. Our method is general because it does not refer to any specific color filter array. However, to allow quantitative comparisons with other published results, we tested it in the case of the Bayer CFA and on the Kodak 24-image dataset, the McMaster (IMAX) 18-image dataset, the Microsoft Demosaicing Canon 57-image dataset, and the Microsoft Demosaicing Panasonic 500-image dataset. The comparisons with some of the most recent demosaicing algorithms show the good performance of our method in both the noiseless and noisy cases.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-024-01204-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Color imagery ; Computer Science ; Datasets ; Derivatives ; Image filters ; Image Processing and Computer Vision ; Mathematical Methods in Physics ; Regularization ; Signal,Image and Speech Processing ; Smoothness</subject><ispartof>Journal of mathematical imaging and vision, 2024-10, Vol.66 (5), p.904-925</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-55e8998742e5d42a974dc15464ffc8d8781283a176bc1a8f2a7314530cdb1b8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-024-01204-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-024-01204-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Boccuto, Antonio</creatorcontrib><creatorcontrib>Gerace, Ivan</creatorcontrib><creatorcontrib>Giorgetti, Valentina</creatorcontrib><creatorcontrib>Martinelli, Francesca</creatorcontrib><creatorcontrib>Tonazzini, Anna</creatorcontrib><title>An Edge-Preserving Regularization Model for the Demosaicing of Noisy Color Images</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>This paper proposes an edge-preserving regularization technique to solve the color image demosaicing problem in the realistic case of noisy data. We enforce intra-channel local smoothness of the intensity (low-frequency components) and inter-channel local similarity of the depth of object borders and textures (high-frequency components). Discontinuities of both the low-frequency and high-frequency components are accounted for implicitly, i.e., through suitable functions of the proper derivatives. For the treatment of even the finest image details, derivatives of first, second, and third orders are considered. The solution to the demosaicing problem is defined as the minimizer of an energy function, accounting for all these constraints plus a data fidelity term. This non-convex energy is minimized via an iterative deterministic algorithm, applied to a family of approximating functions, each implicitly referring to geometrically consistent image edges. Our method is general because it does not refer to any specific color filter array. However, to allow quantitative comparisons with other published results, we tested it in the case of the Bayer CFA and on the Kodak 24-image dataset, the McMaster (IMAX) 18-image dataset, the Microsoft Demosaicing Canon 57-image dataset, and the Microsoft Demosaicing Panasonic 500-image dataset. The comparisons with some of the most recent demosaicing algorithms show the good performance of our method in both the noiseless and noisy cases.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Color imagery</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Derivatives</subject><subject>Image filters</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical Methods in Physics</subject><subject>Regularization</subject><subject>Signal,Image and Speech Processing</subject><subject>Smoothness</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMX7WzrEqBSuUpWFtu4oRUaVzsFCl8PS5BYsdqFvfcO9JB6JzCJQVQV5GClpQAEwQoA0H6AzSiUnGiJpofohFkKcoyUMfoJMY1AGhG1Qg9T1s8LypHnoKLLnzWbYVfXLVrbKi_bFf7Ft_7wjW49AF37w5fu42Pts73oC_xg69jj2e-SfFiYysXT9FRaZvozn7vGL3dzF9nd2T5eLuYTZckZ0J0REqns0wrwZwsBLOZEkVOpZiIssx1oZWmTHNL1WSVU6tLZhWnQnLIixVdacvH6GLY3Qb_sXOxM2u_C216aTiFtMSTkkSxgcqDjzG40mxDvbGhNxTMXp0Z1JmkzvyoM30q8aEUE9xWLvxN_9P6BscNcLc</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Boccuto, Antonio</creator><creator>Gerace, Ivan</creator><creator>Giorgetti, Valentina</creator><creator>Martinelli, Francesca</creator><creator>Tonazzini, Anna</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>An Edge-Preserving Regularization Model for the Demosaicing of Noisy Color Images</title><author>Boccuto, Antonio ; Gerace, Ivan ; Giorgetti, Valentina ; Martinelli, Francesca ; Tonazzini, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-55e8998742e5d42a974dc15464ffc8d8781283a176bc1a8f2a7314530cdb1b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Color imagery</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Derivatives</topic><topic>Image filters</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical Methods in Physics</topic><topic>Regularization</topic><topic>Signal,Image and Speech Processing</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boccuto, Antonio</creatorcontrib><creatorcontrib>Gerace, Ivan</creatorcontrib><creatorcontrib>Giorgetti, Valentina</creatorcontrib><creatorcontrib>Martinelli, Francesca</creatorcontrib><creatorcontrib>Tonazzini, Anna</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boccuto, Antonio</au><au>Gerace, Ivan</au><au>Giorgetti, Valentina</au><au>Martinelli, Francesca</au><au>Tonazzini, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Edge-Preserving Regularization Model for the Demosaicing of Noisy Color Images</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>66</volume><issue>5</issue><spage>904</spage><epage>925</epage><pages>904-925</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>This paper proposes an edge-preserving regularization technique to solve the color image demosaicing problem in the realistic case of noisy data. We enforce intra-channel local smoothness of the intensity (low-frequency components) and inter-channel local similarity of the depth of object borders and textures (high-frequency components). Discontinuities of both the low-frequency and high-frequency components are accounted for implicitly, i.e., through suitable functions of the proper derivatives. For the treatment of even the finest image details, derivatives of first, second, and third orders are considered. The solution to the demosaicing problem is defined as the minimizer of an energy function, accounting for all these constraints plus a data fidelity term. This non-convex energy is minimized via an iterative deterministic algorithm, applied to a family of approximating functions, each implicitly referring to geometrically consistent image edges. Our method is general because it does not refer to any specific color filter array. However, to allow quantitative comparisons with other published results, we tested it in the case of the Bayer CFA and on the Kodak 24-image dataset, the McMaster (IMAX) 18-image dataset, the Microsoft Demosaicing Canon 57-image dataset, and the Microsoft Demosaicing Panasonic 500-image dataset. The comparisons with some of the most recent demosaicing algorithms show the good performance of our method in both the noiseless and noisy cases.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-024-01204-y</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 2024-10, Vol.66 (5), p.904-925 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_proquest_journals_3101543085 |
source | SpringerNature Journals |
subjects | Algorithms Applications of Mathematics Color imagery Computer Science Datasets Derivatives Image filters Image Processing and Computer Vision Mathematical Methods in Physics Regularization Signal,Image and Speech Processing Smoothness |
title | An Edge-Preserving Regularization Model for the Demosaicing of Noisy Color Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Edge-Preserving%20Regularization%20Model%20for%20the%20Demosaicing%20of%20Noisy%20Color%20Images&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Boccuto,%20Antonio&rft.date=2024-10-01&rft.volume=66&rft.issue=5&rft.spage=904&rft.epage=925&rft.pages=904-925&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-024-01204-y&rft_dat=%3Cproquest_cross%3E3101543085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101543085&rft_id=info:pmid/&rfr_iscdi=true |