Reprogrammable sequencing for physically intelligent under-actuated robots
Programming physical intelligence into mechanisms holds great promise for machines that can accomplish tasks such as navigation of unstructured environments while utilizing a minimal amount of computational resources and electronic components. In this study, we introduce a novel design approach for...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kamp, Leon M Zanaty, Mohamed Ahmad Zareei Gorissen, Benjamin Wood, Robert J Bertoldi, Katia |
description | Programming physical intelligence into mechanisms holds great promise for machines that can accomplish tasks such as navigation of unstructured environments while utilizing a minimal amount of computational resources and electronic components. In this study, we introduce a novel design approach for physically intelligent under-actuated mechanisms capable of autonomously adjusting their motion in response to environmental interactions. Specifically, multistability is harnessed to sequence the motion of different degrees of freedom in a programmed order. A key aspect of this approach is that these sequences can be passively reprogrammed through mechanical stimuli that arise from interactions with the environment. To showcase our approach, we construct a four degree of freedom robot capable of autonomously navigating mazes and moving away from obstacles. Remarkably, this robot operates without relying on traditional computational architectures and utilizes only a single linear actuator. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3101377810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101377810</sourcerecordid><originalsourceid>FETCH-proquest_journals_31013778103</originalsourceid><addsrcrecordid>eNqNjb0KwjAURoMgWLTvEHAu5Mfa7qKIo7iXtL2NKWlSc5Ohb28HH8DpG87hfBuSCSl5UZ-E2JEccWSMiXMlylJm5PGEOXgd1DSp1gJF-CRwnXGaDj7Q-b2g6ZS1CzUugrVGg4s0uR5CobqYVISeBt_6iAeyHZRFyH-7J8fb9XW5F-vBGsXYjD4Ft6JGcsZlVdWcyf-sL3gqPgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101377810</pqid></control><display><type>article</type><title>Reprogrammable sequencing for physically intelligent under-actuated robots</title><source>Free E- Journals</source><creator>Kamp, Leon M ; Zanaty, Mohamed ; Ahmad Zareei ; Gorissen, Benjamin ; Wood, Robert J ; Bertoldi, Katia</creator><creatorcontrib>Kamp, Leon M ; Zanaty, Mohamed ; Ahmad Zareei ; Gorissen, Benjamin ; Wood, Robert J ; Bertoldi, Katia</creatorcontrib><description>Programming physical intelligence into mechanisms holds great promise for machines that can accomplish tasks such as navigation of unstructured environments while utilizing a minimal amount of computational resources and electronic components. In this study, we introduce a novel design approach for physically intelligent under-actuated mechanisms capable of autonomously adjusting their motion in response to environmental interactions. Specifically, multistability is harnessed to sequence the motion of different degrees of freedom in a programmed order. A key aspect of this approach is that these sequences can be passively reprogrammed through mechanical stimuli that arise from interactions with the environment. To showcase our approach, we construct a four degree of freedom robot capable of autonomously navigating mazes and moving away from obstacles. Remarkably, this robot operates without relying on traditional computational architectures and utilizes only a single linear actuator.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Degrees of freedom ; Electronic components ; Obstacle avoidance ; Robot dynamics ; Sequences</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kamp, Leon M</creatorcontrib><creatorcontrib>Zanaty, Mohamed</creatorcontrib><creatorcontrib>Ahmad Zareei</creatorcontrib><creatorcontrib>Gorissen, Benjamin</creatorcontrib><creatorcontrib>Wood, Robert J</creatorcontrib><creatorcontrib>Bertoldi, Katia</creatorcontrib><title>Reprogrammable sequencing for physically intelligent under-actuated robots</title><title>arXiv.org</title><description>Programming physical intelligence into mechanisms holds great promise for machines that can accomplish tasks such as navigation of unstructured environments while utilizing a minimal amount of computational resources and electronic components. In this study, we introduce a novel design approach for physically intelligent under-actuated mechanisms capable of autonomously adjusting their motion in response to environmental interactions. Specifically, multistability is harnessed to sequence the motion of different degrees of freedom in a programmed order. A key aspect of this approach is that these sequences can be passively reprogrammed through mechanical stimuli that arise from interactions with the environment. To showcase our approach, we construct a four degree of freedom robot capable of autonomously navigating mazes and moving away from obstacles. Remarkably, this robot operates without relying on traditional computational architectures and utilizes only a single linear actuator.</description><subject>Actuators</subject><subject>Degrees of freedom</subject><subject>Electronic components</subject><subject>Obstacle avoidance</subject><subject>Robot dynamics</subject><subject>Sequences</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjb0KwjAURoMgWLTvEHAu5Mfa7qKIo7iXtL2NKWlSc5Ohb28HH8DpG87hfBuSCSl5UZ-E2JEccWSMiXMlylJm5PGEOXgd1DSp1gJF-CRwnXGaDj7Q-b2g6ZS1CzUugrVGg4s0uR5CobqYVISeBt_6iAeyHZRFyH-7J8fb9XW5F-vBGsXYjD4Ft6JGcsZlVdWcyf-sL3gqPgY</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Kamp, Leon M</creator><creator>Zanaty, Mohamed</creator><creator>Ahmad Zareei</creator><creator>Gorissen, Benjamin</creator><creator>Wood, Robert J</creator><creator>Bertoldi, Katia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240905</creationdate><title>Reprogrammable sequencing for physically intelligent under-actuated robots</title><author>Kamp, Leon M ; Zanaty, Mohamed ; Ahmad Zareei ; Gorissen, Benjamin ; Wood, Robert J ; Bertoldi, Katia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31013778103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Degrees of freedom</topic><topic>Electronic components</topic><topic>Obstacle avoidance</topic><topic>Robot dynamics</topic><topic>Sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamp, Leon M</creatorcontrib><creatorcontrib>Zanaty, Mohamed</creatorcontrib><creatorcontrib>Ahmad Zareei</creatorcontrib><creatorcontrib>Gorissen, Benjamin</creatorcontrib><creatorcontrib>Wood, Robert J</creatorcontrib><creatorcontrib>Bertoldi, Katia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamp, Leon M</au><au>Zanaty, Mohamed</au><au>Ahmad Zareei</au><au>Gorissen, Benjamin</au><au>Wood, Robert J</au><au>Bertoldi, Katia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reprogrammable sequencing for physically intelligent under-actuated robots</atitle><jtitle>arXiv.org</jtitle><date>2024-09-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Programming physical intelligence into mechanisms holds great promise for machines that can accomplish tasks such as navigation of unstructured environments while utilizing a minimal amount of computational resources and electronic components. In this study, we introduce a novel design approach for physically intelligent under-actuated mechanisms capable of autonomously adjusting their motion in response to environmental interactions. Specifically, multistability is harnessed to sequence the motion of different degrees of freedom in a programmed order. A key aspect of this approach is that these sequences can be passively reprogrammed through mechanical stimuli that arise from interactions with the environment. To showcase our approach, we construct a four degree of freedom robot capable of autonomously navigating mazes and moving away from obstacles. Remarkably, this robot operates without relying on traditional computational architectures and utilizes only a single linear actuator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3101377810 |
source | Free E- Journals |
subjects | Actuators Degrees of freedom Electronic components Obstacle avoidance Robot dynamics Sequences |
title | Reprogrammable sequencing for physically intelligent under-actuated robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reprogrammable%20sequencing%20for%20physically%20intelligent%20under-actuated%20robots&rft.jtitle=arXiv.org&rft.au=Kamp,%20Leon%20M&rft.date=2024-09-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3101377810%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101377810&rft_id=info:pmid/&rfr_iscdi=true |