Randomized Lower Bounds for Tarski Fixed Points in High Dimensions
The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the \(k\)-dimensional grid of side length \(n\) under the \(\leq\) relation. Spec...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Brânzei, Simina Phillips, Reed Recker, Nicholas |
description | The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the \(k\)-dimensional grid of side length \(n\) under the \(\leq\) relation. Specifically, there is an unknown monotone function \(f: \{0,1,\ldots, n-1\}^k \to \{0,1,\ldots, n-1\}^k\) and an algorithm must query a vertex \(v\) to learn \(f(v)\). A key special case of interest is the Boolean hypercube \(\{0,1\}^k\), which is isomorphic to the power set lattice -- the original setting of the Knaster-Tarski theorem. Our lower bound characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as \(\Theta(k)\). More generally, we prove a randomized lower bound of \(\Omega\left( k + \frac{k \cdot \log{n}}{\log{k}} \right)\) for the \(k\)-dimensional grid of side length \(n\), which is asymptotically tight in high dimensions when \(k\) is large relative to \(n\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3101377249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101377249</sourcerecordid><originalsourceid>FETCH-proquest_journals_31013772493</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQY6C-uuZl2txEOHCO8iuNpY7tSOUvT0eegBOv2H758JT2kdBttIqYXwmTsppdokKo61J9JLZWvq8WNqONHLOEhptDVDQw6KyvENIcP3pGdCOzCghRzbKxywN5aRLK_EvKnubPxfl2KdHYt9HjwcPUfDQ9nR6OxEpQ5lqJNERTv93_UFfDE5RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101377249</pqid></control><display><type>article</type><title>Randomized Lower Bounds for Tarski Fixed Points in High Dimensions</title><source>Free E- Journals</source><creator>Brânzei, Simina ; Phillips, Reed ; Recker, Nicholas</creator><creatorcontrib>Brânzei, Simina ; Phillips, Reed ; Recker, Nicholas</creatorcontrib><description>The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the \(k\)-dimensional grid of side length \(n\) under the \(\leq\) relation. Specifically, there is an unknown monotone function \(f: \{0,1,\ldots, n-1\}^k \to \{0,1,\ldots, n-1\}^k\) and an algorithm must query a vertex \(v\) to learn \(f(v)\). A key special case of interest is the Boolean hypercube \(\{0,1\}^k\), which is isomorphic to the power set lattice -- the original setting of the Knaster-Tarski theorem. Our lower bound characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as \(\Theta(k)\). More generally, we prove a randomized lower bound of \(\Omega\left( k + \frac{k \cdot \log{n}}{\log{k}} \right)\) for the \(k\)-dimensional grid of side length \(n\), which is asymptotically tight in high dimensions when \(k\) is large relative to \(n\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Boolean ; Complexity ; Dimensional analysis ; Fixed points (mathematics) ; Hypercubes ; Lower bounds ; Queries ; Theorems</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Brânzei, Simina</creatorcontrib><creatorcontrib>Phillips, Reed</creatorcontrib><creatorcontrib>Recker, Nicholas</creatorcontrib><title>Randomized Lower Bounds for Tarski Fixed Points in High Dimensions</title><title>arXiv.org</title><description>The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the \(k\)-dimensional grid of side length \(n\) under the \(\leq\) relation. Specifically, there is an unknown monotone function \(f: \{0,1,\ldots, n-1\}^k \to \{0,1,\ldots, n-1\}^k\) and an algorithm must query a vertex \(v\) to learn \(f(v)\). A key special case of interest is the Boolean hypercube \(\{0,1\}^k\), which is isomorphic to the power set lattice -- the original setting of the Knaster-Tarski theorem. Our lower bound characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as \(\Theta(k)\). More generally, we prove a randomized lower bound of \(\Omega\left( k + \frac{k \cdot \log{n}}{\log{k}} \right)\) for the \(k\)-dimensional grid of side length \(n\), which is asymptotically tight in high dimensions when \(k\) is large relative to \(n\).</description><subject>Algorithms</subject><subject>Boolean</subject><subject>Complexity</subject><subject>Dimensional analysis</subject><subject>Fixed points (mathematics)</subject><subject>Hypercubes</subject><subject>Lower bounds</subject><subject>Queries</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQY6C-uuZl2txEOHCO8iuNpY7tSOUvT0eegBOv2H758JT2kdBttIqYXwmTsppdokKo61J9JLZWvq8WNqONHLOEhptDVDQw6KyvENIcP3pGdCOzCghRzbKxywN5aRLK_EvKnubPxfl2KdHYt9HjwcPUfDQ9nR6OxEpQ5lqJNERTv93_UFfDE5RA</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Brânzei, Simina</creator><creator>Phillips, Reed</creator><creator>Recker, Nicholas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241211</creationdate><title>Randomized Lower Bounds for Tarski Fixed Points in High Dimensions</title><author>Brânzei, Simina ; Phillips, Reed ; Recker, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31013772493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Boolean</topic><topic>Complexity</topic><topic>Dimensional analysis</topic><topic>Fixed points (mathematics)</topic><topic>Hypercubes</topic><topic>Lower bounds</topic><topic>Queries</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Brânzei, Simina</creatorcontrib><creatorcontrib>Phillips, Reed</creatorcontrib><creatorcontrib>Recker, Nicholas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brânzei, Simina</au><au>Phillips, Reed</au><au>Recker, Nicholas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Randomized Lower Bounds for Tarski Fixed Points in High Dimensions</atitle><jtitle>arXiv.org</jtitle><date>2024-12-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the \(k\)-dimensional grid of side length \(n\) under the \(\leq\) relation. Specifically, there is an unknown monotone function \(f: \{0,1,\ldots, n-1\}^k \to \{0,1,\ldots, n-1\}^k\) and an algorithm must query a vertex \(v\) to learn \(f(v)\). A key special case of interest is the Boolean hypercube \(\{0,1\}^k\), which is isomorphic to the power set lattice -- the original setting of the Knaster-Tarski theorem. Our lower bound characterizes the randomized and deterministic query complexity of the Tarski search problem on the Boolean hypercube as \(\Theta(k)\). More generally, we prove a randomized lower bound of \(\Omega\left( k + \frac{k \cdot \log{n}}{\log{k}} \right)\) for the \(k\)-dimensional grid of side length \(n\), which is asymptotically tight in high dimensions when \(k\) is large relative to \(n\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3101377249 |
source | Free E- Journals |
subjects | Algorithms Boolean Complexity Dimensional analysis Fixed points (mathematics) Hypercubes Lower bounds Queries Theorems |
title | Randomized Lower Bounds for Tarski Fixed Points in High Dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Randomized%20Lower%20Bounds%20for%20Tarski%20Fixed%20Points%20in%20High%20Dimensions&rft.jtitle=arXiv.org&rft.au=Br%C3%A2nzei,%20Simina&rft.date=2024-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3101377249%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101377249&rft_id=info:pmid/&rfr_iscdi=true |