A Novel Hardware-Efficient Ergodic Sequential Logic Neuron Model: Cellular Differentiation Method and Virtual Clinical Trial of Neural Prosthesis

A novel sequential logic neuron model and its cellular differentiation method are presented. It is shown that the differentiation method enables the neuron model to reproduce typical nonlinear responses of a given neuron. Then a virtual clinical trial of neural prosthesis is executed, i.e., a target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-09, Vol.71 (9), p.4311-4315
Hauptverfasser: Shiomi, Yuta, Suzuki, Haruto, Torikai, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4315
container_issue 9
container_start_page 4311
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 71
creator Shiomi, Yuta
Suzuki, Haruto
Torikai, Hiroyuki
description A novel sequential logic neuron model and its cellular differentiation method are presented. It is shown that the differentiation method enables the neuron model to reproduce typical nonlinear responses of a given neuron. Then a virtual clinical trial of neural prosthesis is executed, i.e., a target neuron model in a network of biologically plausible differential equation neuron models is replaced with the presented neuron model that is differentiated to reproduce the target neuron model. It is shown that the prosthesis can recover typical neural behaviors of the network for a wide parameter range and has a generalization ability. The presented neuron model is implemented by a field programmable gate array and the virtual clinical trial is validated by experiments. It is concluded that the presented neuron model has better reproduction ability of neural phenomena and much higher hardware efficiency compared to a commonly used simplified differential equation neuron model.
doi_str_mv 10.1109/TCSII.2024.3388549
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3101349624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10499964</ieee_id><sourcerecordid>3101349624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-4cb6b95a22b6197d589e4503c412b765340d0da5cb174d9699628ac6174f859f3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIlMIPIA6WOKf4mcTcqlBopVKQWrhGjh-tqxAXJwHxGfwxTtsDp531zsyuJ4quERwhBPndKl_OZiMMMR0RkmWM8pNogBjLYpJydNpjyuM0pel5dNE0WwgxhwQPot8xWLgvXYGp8OpbeB1PjLHS6roFE792ykqw1J9d6K2owNytw8NCd97V4NkpXd2DXFdVVwkPHqwx2u-Zre3nut04BUStwLv1bRf0eWVrKwNY-d7Omb1XQK_eNe1GN7a5jM6MqBp9dazD6O1xssqn8fzlaZaP57HENG1jKsuk5ExgXCaIp4plXFMGiaQIl2nCCIUKKsFkiVKqeMJ5gjMhk9CZjHFDhtHtwXfnXfhf0xZb1_k6rCwIgojQIKCBhQ8sGQ5svDbFztsP4X8KBIs--mIffdFHXxyjD6Kbg8hqrf8JKA9XUPIHTj2A7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101349624</pqid></control><display><type>article</type><title>A Novel Hardware-Efficient Ergodic Sequential Logic Neuron Model: Cellular Differentiation Method and Virtual Clinical Trial of Neural Prosthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Shiomi, Yuta ; Suzuki, Haruto ; Torikai, Hiroyuki</creator><creatorcontrib>Shiomi, Yuta ; Suzuki, Haruto ; Torikai, Hiroyuki</creatorcontrib><description>A novel sequential logic neuron model and its cellular differentiation method are presented. It is shown that the differentiation method enables the neuron model to reproduce typical nonlinear responses of a given neuron. Then a virtual clinical trial of neural prosthesis is executed, i.e., a target neuron model in a network of biologically plausible differential equation neuron models is replaced with the presented neuron model that is differentiated to reproduce the target neuron model. It is shown that the prosthesis can recover typical neural behaviors of the network for a wide parameter range and has a generalization ability. The presented neuron model is implemented by a field programmable gate array and the virtual clinical trial is validated by experiments. It is concluded that the presented neuron model has better reproduction ability of neural phenomena and much higher hardware efficiency compared to a commonly used simplified differential equation neuron model.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2024.3388549</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>asynchronous sequential logic ; Biological system modeling ; Brain modeling ; cellular differentiation ; Clocks ; Differential equations ; Differentiation (biology) ; Field programmable gate arrays ; FPGA ; Hardware ; Integrated circuit modeling ; Mathematical models ; Neural prostheses ; Neural prosthesis ; neuron model ; Neurons ; Nonlinear response ; Prosthetics</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2024-09, Vol.71 (9), p.4311-4315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-4cb6b95a22b6197d589e4503c412b765340d0da5cb174d9699628ac6174f859f3</cites><orcidid>0000-0002-1428-1355 ; 0000-0003-2795-9628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10499964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10499964$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shiomi, Yuta</creatorcontrib><creatorcontrib>Suzuki, Haruto</creatorcontrib><creatorcontrib>Torikai, Hiroyuki</creatorcontrib><title>A Novel Hardware-Efficient Ergodic Sequential Logic Neuron Model: Cellular Differentiation Method and Virtual Clinical Trial of Neural Prosthesis</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>A novel sequential logic neuron model and its cellular differentiation method are presented. It is shown that the differentiation method enables the neuron model to reproduce typical nonlinear responses of a given neuron. Then a virtual clinical trial of neural prosthesis is executed, i.e., a target neuron model in a network of biologically plausible differential equation neuron models is replaced with the presented neuron model that is differentiated to reproduce the target neuron model. It is shown that the prosthesis can recover typical neural behaviors of the network for a wide parameter range and has a generalization ability. The presented neuron model is implemented by a field programmable gate array and the virtual clinical trial is validated by experiments. It is concluded that the presented neuron model has better reproduction ability of neural phenomena and much higher hardware efficiency compared to a commonly used simplified differential equation neuron model.</description><subject>asynchronous sequential logic</subject><subject>Biological system modeling</subject><subject>Brain modeling</subject><subject>cellular differentiation</subject><subject>Clocks</subject><subject>Differential equations</subject><subject>Differentiation (biology)</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Neural prostheses</subject><subject>Neural prosthesis</subject><subject>neuron model</subject><subject>Neurons</subject><subject>Nonlinear response</subject><subject>Prosthetics</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQjBBIlMIPIA6WOKf4mcTcqlBopVKQWrhGjh-tqxAXJwHxGfwxTtsDp531zsyuJ4quERwhBPndKl_OZiMMMR0RkmWM8pNogBjLYpJydNpjyuM0pel5dNE0WwgxhwQPot8xWLgvXYGp8OpbeB1PjLHS6roFE792ykqw1J9d6K2owNytw8NCd97V4NkpXd2DXFdVVwkPHqwx2u-Zre3nut04BUStwLv1bRf0eWVrKwNY-d7Omb1XQK_eNe1GN7a5jM6MqBp9dazD6O1xssqn8fzlaZaP57HENG1jKsuk5ExgXCaIp4plXFMGiaQIl2nCCIUKKsFkiVKqeMJ5gjMhk9CZjHFDhtHtwXfnXfhf0xZb1_k6rCwIgojQIKCBhQ8sGQ5svDbFztsP4X8KBIs--mIffdFHXxyjD6Kbg8hqrf8JKA9XUPIHTj2A7Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Shiomi, Yuta</creator><creator>Suzuki, Haruto</creator><creator>Torikai, Hiroyuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1428-1355</orcidid><orcidid>https://orcid.org/0000-0003-2795-9628</orcidid></search><sort><creationdate>20240901</creationdate><title>A Novel Hardware-Efficient Ergodic Sequential Logic Neuron Model: Cellular Differentiation Method and Virtual Clinical Trial of Neural Prosthesis</title><author>Shiomi, Yuta ; Suzuki, Haruto ; Torikai, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-4cb6b95a22b6197d589e4503c412b765340d0da5cb174d9699628ac6174f859f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asynchronous sequential logic</topic><topic>Biological system modeling</topic><topic>Brain modeling</topic><topic>cellular differentiation</topic><topic>Clocks</topic><topic>Differential equations</topic><topic>Differentiation (biology)</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Neural prostheses</topic><topic>Neural prosthesis</topic><topic>neuron model</topic><topic>Neurons</topic><topic>Nonlinear response</topic><topic>Prosthetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiomi, Yuta</creatorcontrib><creatorcontrib>Suzuki, Haruto</creatorcontrib><creatorcontrib>Torikai, Hiroyuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shiomi, Yuta</au><au>Suzuki, Haruto</au><au>Torikai, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Hardware-Efficient Ergodic Sequential Logic Neuron Model: Cellular Differentiation Method and Virtual Clinical Trial of Neural Prosthesis</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>71</volume><issue>9</issue><spage>4311</spage><epage>4315</epage><pages>4311-4315</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>A novel sequential logic neuron model and its cellular differentiation method are presented. It is shown that the differentiation method enables the neuron model to reproduce typical nonlinear responses of a given neuron. Then a virtual clinical trial of neural prosthesis is executed, i.e., a target neuron model in a network of biologically plausible differential equation neuron models is replaced with the presented neuron model that is differentiated to reproduce the target neuron model. It is shown that the prosthesis can recover typical neural behaviors of the network for a wide parameter range and has a generalization ability. The presented neuron model is implemented by a field programmable gate array and the virtual clinical trial is validated by experiments. It is concluded that the presented neuron model has better reproduction ability of neural phenomena and much higher hardware efficiency compared to a commonly used simplified differential equation neuron model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2024.3388549</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1428-1355</orcidid><orcidid>https://orcid.org/0000-0003-2795-9628</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2024-09, Vol.71 (9), p.4311-4315
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_3101349624
source IEEE Electronic Library (IEL)
subjects asynchronous sequential logic
Biological system modeling
Brain modeling
cellular differentiation
Clocks
Differential equations
Differentiation (biology)
Field programmable gate arrays
FPGA
Hardware
Integrated circuit modeling
Mathematical models
Neural prostheses
Neural prosthesis
neuron model
Neurons
Nonlinear response
Prosthetics
title A Novel Hardware-Efficient Ergodic Sequential Logic Neuron Model: Cellular Differentiation Method and Virtual Clinical Trial of Neural Prosthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T16%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Hardware-Efficient%20Ergodic%20Sequential%20Logic%20Neuron%20Model:%20Cellular%20Differentiation%20Method%20and%20Virtual%20Clinical%20Trial%20of%20Neural%20Prosthesis&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Shiomi,%20Yuta&rft.date=2024-09-01&rft.volume=71&rft.issue=9&rft.spage=4311&rft.epage=4315&rft.pages=4311-4315&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2024.3388549&rft_dat=%3Cproquest_RIE%3E3101349624%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101349624&rft_id=info:pmid/&rft_ieee_id=10499964&rfr_iscdi=true