Foundations of Multivariate Distributional Reinforcement Learning

In reinforcement learning (RL), the consideration of multivariate reward signals has led to fundamental advancements in multi-objective decision-making, transfer learning, and representation learning. This work introduces the first oracle-free and computationally-tractable algorithms for provably co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Harley Wiltzer, Farebrother, Jesse, Gretton, Arthur, Rowland, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Harley Wiltzer
Farebrother, Jesse
Gretton, Arthur
Rowland, Mark
description In reinforcement learning (RL), the consideration of multivariate reward signals has led to fundamental advancements in multi-objective decision-making, transfer learning, and representation learning. This work introduces the first oracle-free and computationally-tractable algorithms for provably convergent multivariate distributional dynamic programming and temporal difference learning. Our convergence rates match the familiar rates in the scalar reward setting, and additionally provide new insights into the fidelity of approximate return distribution representations as a function of the reward dimension. Surprisingly, when the reward dimension is larger than \(1\), we show that standard analysis of categorical TD learning fails, which we resolve with a novel projection onto the space of mass-\(1\) signed measures. Finally, with the aid of our technical results and simulations, we identify tradeoffs between distribution representations that influence the performance of multivariate distributional RL in practice.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3100998070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100998070</sourcerecordid><originalsourceid>FETCH-proquest_journals_31009980703</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAIMgWLR_CHgubBNr26OoxYNexHuJupUtNdFs4vtV8AGe5jAzI5EorfOsWig1ESlzDwBqWaqi0IlYNS7aqwnkLEvXyUMcAr2MJxNQboiDp3P8WjPII5LtnL_gHW2QezTekr3NxLgzA2P641TMm-1pvcse3j0jcmh7F_3n51bnAHVdQQn6v-oN7Ys6VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100998070</pqid></control><display><type>article</type><title>Foundations of Multivariate Distributional Reinforcement Learning</title><source>Free E- Journals</source><creator>Harley Wiltzer ; Farebrother, Jesse ; Gretton, Arthur ; Rowland, Mark</creator><creatorcontrib>Harley Wiltzer ; Farebrother, Jesse ; Gretton, Arthur ; Rowland, Mark</creatorcontrib><description>In reinforcement learning (RL), the consideration of multivariate reward signals has led to fundamental advancements in multi-objective decision-making, transfer learning, and representation learning. This work introduces the first oracle-free and computationally-tractable algorithms for provably convergent multivariate distributional dynamic programming and temporal difference learning. Our convergence rates match the familiar rates in the scalar reward setting, and additionally provide new insights into the fidelity of approximate return distribution representations as a function of the reward dimension. Surprisingly, when the reward dimension is larger than \(1\), we show that standard analysis of categorical TD learning fails, which we resolve with a novel projection onto the space of mass-\(1\) signed measures. Finally, with the aid of our technical results and simulations, we identify tradeoffs between distribution representations that influence the performance of multivariate distributional RL in practice.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Dynamic programming ; Machine learning ; Multivariate analysis ; Representations</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Harley Wiltzer</creatorcontrib><creatorcontrib>Farebrother, Jesse</creatorcontrib><creatorcontrib>Gretton, Arthur</creatorcontrib><creatorcontrib>Rowland, Mark</creatorcontrib><title>Foundations of Multivariate Distributional Reinforcement Learning</title><title>arXiv.org</title><description>In reinforcement learning (RL), the consideration of multivariate reward signals has led to fundamental advancements in multi-objective decision-making, transfer learning, and representation learning. This work introduces the first oracle-free and computationally-tractable algorithms for provably convergent multivariate distributional dynamic programming and temporal difference learning. Our convergence rates match the familiar rates in the scalar reward setting, and additionally provide new insights into the fidelity of approximate return distribution representations as a function of the reward dimension. Surprisingly, when the reward dimension is larger than \(1\), we show that standard analysis of categorical TD learning fails, which we resolve with a novel projection onto the space of mass-\(1\) signed measures. Finally, with the aid of our technical results and simulations, we identify tradeoffs between distribution representations that influence the performance of multivariate distributional RL in practice.</description><subject>Algorithms</subject><subject>Dynamic programming</subject><subject>Machine learning</subject><subject>Multivariate analysis</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0EKwjAQAIMgWLR_CHgubBNr26OoxYNexHuJupUtNdFs4vtV8AGe5jAzI5EorfOsWig1ESlzDwBqWaqi0IlYNS7aqwnkLEvXyUMcAr2MJxNQboiDp3P8WjPII5LtnL_gHW2QezTekr3NxLgzA2P641TMm-1pvcse3j0jcmh7F_3n51bnAHVdQQn6v-oN7Ys6VA</recordid><startdate>20240831</startdate><enddate>20240831</enddate><creator>Harley Wiltzer</creator><creator>Farebrother, Jesse</creator><creator>Gretton, Arthur</creator><creator>Rowland, Mark</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240831</creationdate><title>Foundations of Multivariate Distributional Reinforcement Learning</title><author>Harley Wiltzer ; Farebrother, Jesse ; Gretton, Arthur ; Rowland, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31009980703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Dynamic programming</topic><topic>Machine learning</topic><topic>Multivariate analysis</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Harley Wiltzer</creatorcontrib><creatorcontrib>Farebrother, Jesse</creatorcontrib><creatorcontrib>Gretton, Arthur</creatorcontrib><creatorcontrib>Rowland, Mark</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harley Wiltzer</au><au>Farebrother, Jesse</au><au>Gretton, Arthur</au><au>Rowland, Mark</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Foundations of Multivariate Distributional Reinforcement Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-08-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In reinforcement learning (RL), the consideration of multivariate reward signals has led to fundamental advancements in multi-objective decision-making, transfer learning, and representation learning. This work introduces the first oracle-free and computationally-tractable algorithms for provably convergent multivariate distributional dynamic programming and temporal difference learning. Our convergence rates match the familiar rates in the scalar reward setting, and additionally provide new insights into the fidelity of approximate return distribution representations as a function of the reward dimension. Surprisingly, when the reward dimension is larger than \(1\), we show that standard analysis of categorical TD learning fails, which we resolve with a novel projection onto the space of mass-\(1\) signed measures. Finally, with the aid of our technical results and simulations, we identify tradeoffs between distribution representations that influence the performance of multivariate distributional RL in practice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3100998070
source Free E- Journals
subjects Algorithms
Dynamic programming
Machine learning
Multivariate analysis
Representations
title Foundations of Multivariate Distributional Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Foundations%20of%20Multivariate%20Distributional%20Reinforcement%20Learning&rft.jtitle=arXiv.org&rft.au=Harley%20Wiltzer&rft.date=2024-08-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3100998070%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100998070&rft_id=info:pmid/&rfr_iscdi=true