Hosts of Sn in reduced deep-seated W skarn systems: A case study on the world-class scheelite skarn deposit, Zhuxi, South China

Tin (Sn) and tungsten (W) behave incompatibly in reduced magmatic systems and may become enriched in late highly-evolved melts. Nonetheless, Sn and W rarely concentrate in the same deposit. In deposits formed by Sn- and W-bearing granites, this separation may be due to the contrasting behavior of Sn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2024-10, Vol.59 (7), p.1433-1454
Hauptverfasser: Song, Shiwei, Mao, Jingwen, Romer, Rolf L., Jian, Wei, Ouyang, Yongpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1454
container_issue 7
container_start_page 1433
container_title Mineralium deposita
container_volume 59
creator Song, Shiwei
Mao, Jingwen
Romer, Rolf L.
Jian, Wei
Ouyang, Yongpeng
description Tin (Sn) and tungsten (W) behave incompatibly in reduced magmatic systems and may become enriched in late highly-evolved melts. Nonetheless, Sn and W rarely concentrate in the same deposit. In deposits formed by Sn- and W-bearing granites, this separation may be due to the contrasting behavior of Sn and W during exsolution of a magmatic fluid or the scavenging of Sn by silicate minerals. We illustrate the separation of Sn and W for the world-class Zhuxi W skarn deposit (South China). Although tin orebodies have not yet been identified within the Zhuxi deposit, tiny (commonly 
doi_str_mv 10.1007/s00126-024-01271-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100997053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100997053</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-742556ad4172ee535d0feb26f40abfcf94e1d408931f4197eba05a5b0c3dd7533</originalsourceid><addsrcrecordid>eNp9kMFq20AQhpfSQl2nL9DTQK7eZla7kqzcjEnqQCCHpBR6WdbaUaXU0To7KxKf8upRbENuOc0P838z8AnxQ-FPhVieMaLKComZkWMolSw-iYkyOpNqXhSfxQRxXJu8mn8V35jvEbFSBifiZRU4MYQGbnvoeojkh5o8eKKtZHJpzH-A_7vYA-840QOfwwJqxwScBr-D0ENqCZ5C3HhZbxwzcN0SbbpER9DTNnCXZvC3HZ67GdyGIbWwbLvenYgvjdswfT_Oqfh9eXG3XMnrm19Xy8W1dFmlkyxNlueF80aVGVGuc48NrbOiMejWTd1UhpQ3OK-0aoyqSlo7zF2-xlp7X-ZaT8Xp4e42hseBONn7MMR-fGn1aLCqSty3skOrjoE5UmO3sXtwcWcV2jfR9iDajqLtXrQtRkgfIB7L_T-K76c_oF4BbdeAxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100997053</pqid></control><display><type>article</type><title>Hosts of Sn in reduced deep-seated W skarn systems: A case study on the world-class scheelite skarn deposit, Zhuxi, South China</title><source>Springer Nature - Complete Springer Journals</source><creator>Song, Shiwei ; Mao, Jingwen ; Romer, Rolf L. ; Jian, Wei ; Ouyang, Yongpeng</creator><creatorcontrib>Song, Shiwei ; Mao, Jingwen ; Romer, Rolf L. ; Jian, Wei ; Ouyang, Yongpeng</creatorcontrib><description>Tin (Sn) and tungsten (W) behave incompatibly in reduced magmatic systems and may become enriched in late highly-evolved melts. Nonetheless, Sn and W rarely concentrate in the same deposit. In deposits formed by Sn- and W-bearing granites, this separation may be due to the contrasting behavior of Sn and W during exsolution of a magmatic fluid or the scavenging of Sn by silicate minerals. We illustrate the separation of Sn and W for the world-class Zhuxi W skarn deposit (South China). Although tin orebodies have not yet been identified within the Zhuxi deposit, tiny (commonly &lt; 20 μm) cassiterite grains are widespread within the endoskarn and the retrogressed exoskarn. We analyzed the W and Sn contents of the magmatic minerals biotite and ilmenite in ore-forming granites and the prograde anhydrous skarn minerals garnet, pyroxene and vesuvianite. Our data show that (i) magmatic ilmenite (65.5–79.1 ppm Sn; 8.7–14.3 ppm W) and biotite (109–120 ppm Sn; 1.3–6.3 ppm W) from biotite monzogranite strongly enrich Sn relative to W, implying that W partitioned more strongly into the magmatic fluids than Sn, (ii) there is 100 Kt non-recoverable Sn within the Zhuxi deposit in addition to the certified 3.44 Mt WO 3 reserves, and (iii) W is mainly hosted in scheelite, whereas Sn is dominantly sequestered in prograde skarn minerals, most importantly garnet (76–4086 ppm Sn, &lt; 42 ppm W), pyroxene (3–103 ppm Sn, &lt; 1 ppm W), and vesuvianite (43–361 ppm Sn, &lt; 2 ppm W). The formation of secondary cassiterite requires the release of silicate-bound Sn by alteration of primary skarn minerals, which depends on the availability of magmatic or metamorphic fluids. Deep-seated granites such as those associated with the Zhuxi skarn deposit, which crystallized at 5 km to 12.6 km depth, do not release or mobilize copious amounts of fluid. Therefore, the Zhuxi deposit, like other deep-seated reduced skarn systems shows little alteration and most Sn remains in silicate minerals and is economically non-recoverable. Thus, reduced, deep-seated W skarn systems are unlikely to have associated Sn orebodies even if significant amounts of Sn are present.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-024-01271-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotite ; Case studies ; Cassiterite ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Garnet ; Garnets ; Geology ; Granite ; Ilmenite ; Mineral Resources ; Mineralization ; Mineralogy ; Minerals ; Pyroxenes ; Scavenging ; Scheelite ; Separation ; Silicate minerals ; Silicates ; Tin ; Tungsten</subject><ispartof>Mineralium deposita, 2024-10, Vol.59 (7), p.1433-1454</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-742556ad4172ee535d0feb26f40abfcf94e1d408931f4197eba05a5b0c3dd7533</cites><orcidid>0000-0002-6415-0142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-024-01271-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-024-01271-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Song, Shiwei</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Romer, Rolf L.</creatorcontrib><creatorcontrib>Jian, Wei</creatorcontrib><creatorcontrib>Ouyang, Yongpeng</creatorcontrib><title>Hosts of Sn in reduced deep-seated W skarn systems: A case study on the world-class scheelite skarn deposit, Zhuxi, South China</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Tin (Sn) and tungsten (W) behave incompatibly in reduced magmatic systems and may become enriched in late highly-evolved melts. Nonetheless, Sn and W rarely concentrate in the same deposit. In deposits formed by Sn- and W-bearing granites, this separation may be due to the contrasting behavior of Sn and W during exsolution of a magmatic fluid or the scavenging of Sn by silicate minerals. We illustrate the separation of Sn and W for the world-class Zhuxi W skarn deposit (South China). Although tin orebodies have not yet been identified within the Zhuxi deposit, tiny (commonly &lt; 20 μm) cassiterite grains are widespread within the endoskarn and the retrogressed exoskarn. We analyzed the W and Sn contents of the magmatic minerals biotite and ilmenite in ore-forming granites and the prograde anhydrous skarn minerals garnet, pyroxene and vesuvianite. Our data show that (i) magmatic ilmenite (65.5–79.1 ppm Sn; 8.7–14.3 ppm W) and biotite (109–120 ppm Sn; 1.3–6.3 ppm W) from biotite monzogranite strongly enrich Sn relative to W, implying that W partitioned more strongly into the magmatic fluids than Sn, (ii) there is 100 Kt non-recoverable Sn within the Zhuxi deposit in addition to the certified 3.44 Mt WO 3 reserves, and (iii) W is mainly hosted in scheelite, whereas Sn is dominantly sequestered in prograde skarn minerals, most importantly garnet (76–4086 ppm Sn, &lt; 42 ppm W), pyroxene (3–103 ppm Sn, &lt; 1 ppm W), and vesuvianite (43–361 ppm Sn, &lt; 2 ppm W). The formation of secondary cassiterite requires the release of silicate-bound Sn by alteration of primary skarn minerals, which depends on the availability of magmatic or metamorphic fluids. Deep-seated granites such as those associated with the Zhuxi skarn deposit, which crystallized at 5 km to 12.6 km depth, do not release or mobilize copious amounts of fluid. Therefore, the Zhuxi deposit, like other deep-seated reduced skarn systems shows little alteration and most Sn remains in silicate minerals and is economically non-recoverable. Thus, reduced, deep-seated W skarn systems are unlikely to have associated Sn orebodies even if significant amounts of Sn are present.</description><subject>Biotite</subject><subject>Case studies</subject><subject>Cassiterite</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Garnet</subject><subject>Garnets</subject><subject>Geology</subject><subject>Granite</subject><subject>Ilmenite</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Pyroxenes</subject><subject>Scavenging</subject><subject>Scheelite</subject><subject>Separation</subject><subject>Silicate minerals</subject><subject>Silicates</subject><subject>Tin</subject><subject>Tungsten</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq20AQhpfSQl2nL9DTQK7eZla7kqzcjEnqQCCHpBR6WdbaUaXU0To7KxKf8upRbENuOc0P838z8AnxQ-FPhVieMaLKComZkWMolSw-iYkyOpNqXhSfxQRxXJu8mn8V35jvEbFSBifiZRU4MYQGbnvoeojkh5o8eKKtZHJpzH-A_7vYA-840QOfwwJqxwScBr-D0ENqCZ5C3HhZbxwzcN0SbbpER9DTNnCXZvC3HZ67GdyGIbWwbLvenYgvjdswfT_Oqfh9eXG3XMnrm19Xy8W1dFmlkyxNlueF80aVGVGuc48NrbOiMejWTd1UhpQ3OK-0aoyqSlo7zF2-xlp7X-ZaT8Xp4e42hseBONn7MMR-fGn1aLCqSty3skOrjoE5UmO3sXtwcWcV2jfR9iDajqLtXrQtRkgfIB7L_T-K76c_oF4BbdeAxw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Song, Shiwei</creator><creator>Mao, Jingwen</creator><creator>Romer, Rolf L.</creator><creator>Jian, Wei</creator><creator>Ouyang, Yongpeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6415-0142</orcidid></search><sort><creationdate>20241001</creationdate><title>Hosts of Sn in reduced deep-seated W skarn systems: A case study on the world-class scheelite skarn deposit, Zhuxi, South China</title><author>Song, Shiwei ; Mao, Jingwen ; Romer, Rolf L. ; Jian, Wei ; Ouyang, Yongpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-742556ad4172ee535d0feb26f40abfcf94e1d408931f4197eba05a5b0c3dd7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biotite</topic><topic>Case studies</topic><topic>Cassiterite</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Garnet</topic><topic>Garnets</topic><topic>Geology</topic><topic>Granite</topic><topic>Ilmenite</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Pyroxenes</topic><topic>Scavenging</topic><topic>Scheelite</topic><topic>Separation</topic><topic>Silicate minerals</topic><topic>Silicates</topic><topic>Tin</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Shiwei</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Romer, Rolf L.</creatorcontrib><creatorcontrib>Jian, Wei</creatorcontrib><creatorcontrib>Ouyang, Yongpeng</creatorcontrib><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Shiwei</au><au>Mao, Jingwen</au><au>Romer, Rolf L.</au><au>Jian, Wei</au><au>Ouyang, Yongpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hosts of Sn in reduced deep-seated W skarn systems: A case study on the world-class scheelite skarn deposit, Zhuxi, South China</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>59</volume><issue>7</issue><spage>1433</spage><epage>1454</epage><pages>1433-1454</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Tin (Sn) and tungsten (W) behave incompatibly in reduced magmatic systems and may become enriched in late highly-evolved melts. Nonetheless, Sn and W rarely concentrate in the same deposit. In deposits formed by Sn- and W-bearing granites, this separation may be due to the contrasting behavior of Sn and W during exsolution of a magmatic fluid or the scavenging of Sn by silicate minerals. We illustrate the separation of Sn and W for the world-class Zhuxi W skarn deposit (South China). Although tin orebodies have not yet been identified within the Zhuxi deposit, tiny (commonly &lt; 20 μm) cassiterite grains are widespread within the endoskarn and the retrogressed exoskarn. We analyzed the W and Sn contents of the magmatic minerals biotite and ilmenite in ore-forming granites and the prograde anhydrous skarn minerals garnet, pyroxene and vesuvianite. Our data show that (i) magmatic ilmenite (65.5–79.1 ppm Sn; 8.7–14.3 ppm W) and biotite (109–120 ppm Sn; 1.3–6.3 ppm W) from biotite monzogranite strongly enrich Sn relative to W, implying that W partitioned more strongly into the magmatic fluids than Sn, (ii) there is 100 Kt non-recoverable Sn within the Zhuxi deposit in addition to the certified 3.44 Mt WO 3 reserves, and (iii) W is mainly hosted in scheelite, whereas Sn is dominantly sequestered in prograde skarn minerals, most importantly garnet (76–4086 ppm Sn, &lt; 42 ppm W), pyroxene (3–103 ppm Sn, &lt; 1 ppm W), and vesuvianite (43–361 ppm Sn, &lt; 2 ppm W). The formation of secondary cassiterite requires the release of silicate-bound Sn by alteration of primary skarn minerals, which depends on the availability of magmatic or metamorphic fluids. Deep-seated granites such as those associated with the Zhuxi skarn deposit, which crystallized at 5 km to 12.6 km depth, do not release or mobilize copious amounts of fluid. Therefore, the Zhuxi deposit, like other deep-seated reduced skarn systems shows little alteration and most Sn remains in silicate minerals and is economically non-recoverable. Thus, reduced, deep-seated W skarn systems are unlikely to have associated Sn orebodies even if significant amounts of Sn are present.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-024-01271-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6415-0142</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2024-10, Vol.59 (7), p.1433-1454
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_3100997053
source Springer Nature - Complete Springer Journals
subjects Biotite
Case studies
Cassiterite
Crystallization
Earth and Environmental Science
Earth Sciences
Fluids
Garnet
Garnets
Geology
Granite
Ilmenite
Mineral Resources
Mineralization
Mineralogy
Minerals
Pyroxenes
Scavenging
Scheelite
Separation
Silicate minerals
Silicates
Tin
Tungsten
title Hosts of Sn in reduced deep-seated W skarn systems: A case study on the world-class scheelite skarn deposit, Zhuxi, South China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hosts%20of%20Sn%20in%20reduced%20deep-seated%20W%20skarn%20systems:%20A%20case%20study%20on%20the%20world-class%20scheelite%20skarn%20deposit,%20Zhuxi,%20South%20China&rft.jtitle=Mineralium%20deposita&rft.au=Song,%20Shiwei&rft.date=2024-10-01&rft.volume=59&rft.issue=7&rft.spage=1433&rft.epage=1454&rft.pages=1433-1454&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-024-01271-6&rft_dat=%3Cproquest_cross%3E3100997053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100997053&rft_id=info:pmid/&rfr_iscdi=true