A numerical solution for fully fuzzy nonlinear systems based on the Broyden method
Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2970 |
creator | Megarani, Wahyu Zakaria, La |
description | Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterative process of solving a nonlinear system of equations that is fully fuzzy and consists of the arithmetic of fuzzy triangular numbers. We also supplement this article with an algorithm (Pseudocode) and computer programming (MATLAB) to obtain solutions quickly with minimal errors. |
doi_str_mv | 10.1063/5.0208306 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3100973796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100973796</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-bd71182a56b0aefdf3f9cb09e225c1998ec6f0d7c0fb55b8a2727f93f897eea43</originalsourceid><addsrcrecordid>eNotkD1rwzAYhEVpoWnaof9A0K3g9JUUSdaYhn5BoFAydBOy_Yo42FYq2YPz6-uQLHfLwx13hDwyWDBQ4kUugEMuQF2RGZOSZVoxdU1mAGaZ8aX4vSV3Ke0BuNE6n5GfFe2GFmNduoam0Ax9HTrqQ6R-aJpx0uNxpF3omrpDF2kaU49tooVLWNEJ7XdIX2MYK-xoi_0uVPfkxrsm4cPF52T7_rZdf2ab74-v9WqTHZRQWVFpxnLupCrAoa-88KYswCDnsmTG5FgqD5UuwRdSFrnjmmtvhM-NRnRLMSdP59hDDH8Dpt7uwxC7qdEKNs3VQhs1Uc9nKpV1707j7CHWrYujZWBPl1lpL5eJf3wtXqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3100973796</pqid></control><display><type>conference_proceeding</type><title>A numerical solution for fully fuzzy nonlinear systems based on the Broyden method</title><source>AIP Journals Complete</source><creator>Megarani, Wahyu ; Zakaria, La</creator><contributor>Hadi, Sutopo ; Putrawan, Gede Eka ; Septiawan, Trio Yuda ; Perdana, Ryzal</contributor><creatorcontrib>Megarani, Wahyu ; Zakaria, La ; Hadi, Sutopo ; Putrawan, Gede Eka ; Septiawan, Trio Yuda ; Perdana, Ryzal</creatorcontrib><description>Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterative process of solving a nonlinear system of equations that is fully fuzzy and consists of the arithmetic of fuzzy triangular numbers. We also supplement this article with an algorithm (Pseudocode) and computer programming (MATLAB) to obtain solutions quickly with minimal errors.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0208306</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Computer programming ; Fuzzy systems ; Iterative methods ; Mathematical analysis ; Nonlinear systems ; Numerical methods</subject><ispartof>AIP conference proceedings, 2024, Vol.2970 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0208306$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Hadi, Sutopo</contributor><contributor>Putrawan, Gede Eka</contributor><contributor>Septiawan, Trio Yuda</contributor><contributor>Perdana, Ryzal</contributor><creatorcontrib>Megarani, Wahyu</creatorcontrib><creatorcontrib>Zakaria, La</creatorcontrib><title>A numerical solution for fully fuzzy nonlinear systems based on the Broyden method</title><title>AIP conference proceedings</title><description>Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterative process of solving a nonlinear system of equations that is fully fuzzy and consists of the arithmetic of fuzzy triangular numbers. We also supplement this article with an algorithm (Pseudocode) and computer programming (MATLAB) to obtain solutions quickly with minimal errors.</description><subject>Algorithms</subject><subject>Computer programming</subject><subject>Fuzzy systems</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Nonlinear systems</subject><subject>Numerical methods</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1rwzAYhEVpoWnaof9A0K3g9JUUSdaYhn5BoFAydBOy_Yo42FYq2YPz6-uQLHfLwx13hDwyWDBQ4kUugEMuQF2RGZOSZVoxdU1mAGaZ8aX4vSV3Ke0BuNE6n5GfFe2GFmNduoam0Ax9HTrqQ6R-aJpx0uNxpF3omrpDF2kaU49tooVLWNEJ7XdIX2MYK-xoi_0uVPfkxrsm4cPF52T7_rZdf2ab74-v9WqTHZRQWVFpxnLupCrAoa-88KYswCDnsmTG5FgqD5UuwRdSFrnjmmtvhM-NRnRLMSdP59hDDH8Dpt7uwxC7qdEKNs3VQhs1Uc9nKpV1707j7CHWrYujZWBPl1lpL5eJf3wtXqg</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Megarani, Wahyu</creator><creator>Zakaria, La</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240905</creationdate><title>A numerical solution for fully fuzzy nonlinear systems based on the Broyden method</title><author>Megarani, Wahyu ; Zakaria, La</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-bd71182a56b0aefdf3f9cb09e225c1998ec6f0d7c0fb55b8a2727f93f897eea43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer programming</topic><topic>Fuzzy systems</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Nonlinear systems</topic><topic>Numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Megarani, Wahyu</creatorcontrib><creatorcontrib>Zakaria, La</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megarani, Wahyu</au><au>Zakaria, La</au><au>Hadi, Sutopo</au><au>Putrawan, Gede Eka</au><au>Septiawan, Trio Yuda</au><au>Perdana, Ryzal</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A numerical solution for fully fuzzy nonlinear systems based on the Broyden method</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-05</date><risdate>2024</risdate><volume>2970</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterative process of solving a nonlinear system of equations that is fully fuzzy and consists of the arithmetic of fuzzy triangular numbers. We also supplement this article with an algorithm (Pseudocode) and computer programming (MATLAB) to obtain solutions quickly with minimal errors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0208306</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2970 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3100973796 |
source | AIP Journals Complete |
subjects | Algorithms Computer programming Fuzzy systems Iterative methods Mathematical analysis Nonlinear systems Numerical methods |
title | A numerical solution for fully fuzzy nonlinear systems based on the Broyden method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20numerical%20solution%20for%20fully%20fuzzy%20nonlinear%20systems%20based%20on%20the%20Broyden%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Megarani,%20Wahyu&rft.date=2024-09-05&rft.volume=2970&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0208306&rft_dat=%3Cproquest_scita%3E3100973796%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100973796&rft_id=info:pmid/&rfr_iscdi=true |