A numerical solution for fully fuzzy nonlinear systems based on the Broyden method

Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Megarani, Wahyu, Zakaria, La
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2970
creator Megarani, Wahyu
Zakaria, La
description Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterative process of solving a nonlinear system of equations that is fully fuzzy and consists of the arithmetic of fuzzy triangular numbers. We also supplement this article with an algorithm (Pseudocode) and computer programming (MATLAB) to obtain solutions quickly with minimal errors.
doi_str_mv 10.1063/5.0208306
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3100973796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100973796</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-bd71182a56b0aefdf3f9cb09e225c1998ec6f0d7c0fb55b8a2727f93f897eea43</originalsourceid><addsrcrecordid>eNotkD1rwzAYhEVpoWnaof9A0K3g9JUUSdaYhn5BoFAydBOy_Yo42FYq2YPz6-uQLHfLwx13hDwyWDBQ4kUugEMuQF2RGZOSZVoxdU1mAGaZ8aX4vSV3Ke0BuNE6n5GfFe2GFmNduoam0Ax9HTrqQ6R-aJpx0uNxpF3omrpDF2kaU49tooVLWNEJ7XdIX2MYK-xoi_0uVPfkxrsm4cPF52T7_rZdf2ab74-v9WqTHZRQWVFpxnLupCrAoa-88KYswCDnsmTG5FgqD5UuwRdSFrnjmmtvhM-NRnRLMSdP59hDDH8Dpt7uwxC7qdEKNs3VQhs1Uc9nKpV1707j7CHWrYujZWBPl1lpL5eJf3wtXqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3100973796</pqid></control><display><type>conference_proceeding</type><title>A numerical solution for fully fuzzy nonlinear systems based on the Broyden method</title><source>AIP Journals Complete</source><creator>Megarani, Wahyu ; Zakaria, La</creator><contributor>Hadi, Sutopo ; Putrawan, Gede Eka ; Septiawan, Trio Yuda ; Perdana, Ryzal</contributor><creatorcontrib>Megarani, Wahyu ; Zakaria, La ; Hadi, Sutopo ; Putrawan, Gede Eka ; Septiawan, Trio Yuda ; Perdana, Ryzal</creatorcontrib><description>Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterative process of solving a nonlinear system of equations that is fully fuzzy and consists of the arithmetic of fuzzy triangular numbers. We also supplement this article with an algorithm (Pseudocode) and computer programming (MATLAB) to obtain solutions quickly with minimal errors.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0208306</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Computer programming ; Fuzzy systems ; Iterative methods ; Mathematical analysis ; Nonlinear systems ; Numerical methods</subject><ispartof>AIP conference proceedings, 2024, Vol.2970 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0208306$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Hadi, Sutopo</contributor><contributor>Putrawan, Gede Eka</contributor><contributor>Septiawan, Trio Yuda</contributor><contributor>Perdana, Ryzal</contributor><creatorcontrib>Megarani, Wahyu</creatorcontrib><creatorcontrib>Zakaria, La</creatorcontrib><title>A numerical solution for fully fuzzy nonlinear systems based on the Broyden method</title><title>AIP conference proceedings</title><description>Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterative process of solving a nonlinear system of equations that is fully fuzzy and consists of the arithmetic of fuzzy triangular numbers. We also supplement this article with an algorithm (Pseudocode) and computer programming (MATLAB) to obtain solutions quickly with minimal errors.</description><subject>Algorithms</subject><subject>Computer programming</subject><subject>Fuzzy systems</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Nonlinear systems</subject><subject>Numerical methods</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1rwzAYhEVpoWnaof9A0K3g9JUUSdaYhn5BoFAydBOy_Yo42FYq2YPz6-uQLHfLwx13hDwyWDBQ4kUugEMuQF2RGZOSZVoxdU1mAGaZ8aX4vSV3Ke0BuNE6n5GfFe2GFmNduoam0Ax9HTrqQ6R-aJpx0uNxpF3omrpDF2kaU49tooVLWNEJ7XdIX2MYK-xoi_0uVPfkxrsm4cPF52T7_rZdf2ab74-v9WqTHZRQWVFpxnLupCrAoa-88KYswCDnsmTG5FgqD5UuwRdSFrnjmmtvhM-NRnRLMSdP59hDDH8Dpt7uwxC7qdEKNs3VQhs1Uc9nKpV1707j7CHWrYujZWBPl1lpL5eJf3wtXqg</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Megarani, Wahyu</creator><creator>Zakaria, La</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240905</creationdate><title>A numerical solution for fully fuzzy nonlinear systems based on the Broyden method</title><author>Megarani, Wahyu ; Zakaria, La</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-bd71182a56b0aefdf3f9cb09e225c1998ec6f0d7c0fb55b8a2727f93f897eea43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer programming</topic><topic>Fuzzy systems</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Nonlinear systems</topic><topic>Numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Megarani, Wahyu</creatorcontrib><creatorcontrib>Zakaria, La</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megarani, Wahyu</au><au>Zakaria, La</au><au>Hadi, Sutopo</au><au>Putrawan, Gede Eka</au><au>Septiawan, Trio Yuda</au><au>Perdana, Ryzal</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A numerical solution for fully fuzzy nonlinear systems based on the Broyden method</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-05</date><risdate>2024</risdate><volume>2970</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Several iterative methods can solve a fully fuzzy nonlinear system. However, the matrix concept is preferred in solving a fully fuzzy nonlinear system of equations to make it straightforward. This article describes a numerical method that involves the idea of a matrix (Broyden’s method) in an iterative process of solving a nonlinear system of equations that is fully fuzzy and consists of the arithmetic of fuzzy triangular numbers. We also supplement this article with an algorithm (Pseudocode) and computer programming (MATLAB) to obtain solutions quickly with minimal errors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0208306</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2970 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3100973796
source AIP Journals Complete
subjects Algorithms
Computer programming
Fuzzy systems
Iterative methods
Mathematical analysis
Nonlinear systems
Numerical methods
title A numerical solution for fully fuzzy nonlinear systems based on the Broyden method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20numerical%20solution%20for%20fully%20fuzzy%20nonlinear%20systems%20based%20on%20the%20Broyden%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Megarani,%20Wahyu&rft.date=2024-09-05&rft.volume=2970&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0208306&rft_dat=%3Cproquest_scita%3E3100973796%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100973796&rft_id=info:pmid/&rfr_iscdi=true