Forced Lateral Vibrations of Magnetically Soft Microribbon: Construction of Partial Solutions

The mathematical description of low-frequency vibrations of the magnetically soft precision microribbon Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 with the fixed one end is proposed in the paper. Resonant frequencies of induced mechanical vibrations of microribbons are found in the given frequency range of 15–80...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radioelectronics and communications systems 2023, Vol.66 (9), p.478-489
Hauptverfasser: Sizhuk, Andrii, Zhao, Zhenjie, Chen, Xiaohong, Sun, Zhuo, Dong, Guangjiong, Prokopenko, Oleksandr, Tretyak, Alina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 9
container_start_page 478
container_title Radioelectronics and communications systems
container_volume 66
creator Sizhuk, Andrii
Zhao, Zhenjie
Chen, Xiaohong
Sun, Zhuo
Dong, Guangjiong
Prokopenko, Oleksandr
Tretyak, Alina
description The mathematical description of low-frequency vibrations of the magnetically soft precision microribbon Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 with the fixed one end is proposed in the paper. Resonant frequencies of induced mechanical vibrations of microribbons are found in the given frequency range of 15–80 Hz, for an alternating magnetic field. The attenuation coefficient, measured for the mechanical self-vibration of the annealed sample, is derived. This coefficient measured by laser turns out to be much smaller than the corresponding half-width of the amplitude-frequency characteristic (frequency response) of the described above forced vibrations The theoretical model of forced and free microribbon vibrations with finite thickness and width is proposed. One of the created partial solutions properties is a relatively wide resonance curve, which is confirmed experimentally. The given examples of partial solutions confirm the assumption about the frequency response shape below the maximum frequency at the specified excitation frequency and system parameters. The dependence of the mechanical parameter characterizing the force moment during bending deformation on the applied magnetic field intensity determines the mechanical properties of soft magnetic crystalline materials.
doi_str_mv 10.3103/S0735272723080046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100892949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100892949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1136-b7b0b5d8d2d4291e6279ab89344f565aedb05a3b04e4fe7c3af4085dbbafb98a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rk3-7GmxRbhRaFqjdZkt2kbFk3Ncke-u3NWsGDyBzmML_3ZuYhdEngmhFgN2somKBFKgYlAM-P0IRIxrMScnKMJuM4G-en6CyELYAQUtAJep87X5sGL1U0XnX4rdVexdb1ATuLV2rTm9jWquv2eO1sxKu29s63Wrv-Fs8SFv1Qj_yIPysf22Sydt3w7XGOTqzqgrn46VP0Or9_mT1ky6fF4-xumdWEsDzThQYtmrKhDaeSmJwWUukync-tyIUyjQahmAZuuDVFzZTlUIpGa2W1LBWboquD7867z8GEWG3d4Pu0skrpQCmp5DJR5EClF0LwxlY7334ov68IjByr_qSYNPSgCYntN8b_Ov8v-gIazXS5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100892949</pqid></control><display><type>article</type><title>Forced Lateral Vibrations of Magnetically Soft Microribbon: Construction of Partial Solutions</title><source>SpringerNature Journals</source><creator>Sizhuk, Andrii ; Zhao, Zhenjie ; Chen, Xiaohong ; Sun, Zhuo ; Dong, Guangjiong ; Prokopenko, Oleksandr ; Tretyak, Alina</creator><creatorcontrib>Sizhuk, Andrii ; Zhao, Zhenjie ; Chen, Xiaohong ; Sun, Zhuo ; Dong, Guangjiong ; Prokopenko, Oleksandr ; Tretyak, Alina</creatorcontrib><description>The mathematical description of low-frequency vibrations of the magnetically soft precision microribbon Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 with the fixed one end is proposed in the paper. Resonant frequencies of induced mechanical vibrations of microribbons are found in the given frequency range of 15–80 Hz, for an alternating magnetic field. The attenuation coefficient, measured for the mechanical self-vibration of the annealed sample, is derived. This coefficient measured by laser turns out to be much smaller than the corresponding half-width of the amplitude-frequency characteristic (frequency response) of the described above forced vibrations The theoretical model of forced and free microribbon vibrations with finite thickness and width is proposed. One of the created partial solutions properties is a relatively wide resonance curve, which is confirmed experimentally. The given examples of partial solutions confirm the assumption about the frequency response shape below the maximum frequency at the specified excitation frequency and system parameters. The dependence of the mechanical parameter characterizing the force moment during bending deformation on the applied magnetic field intensity determines the mechanical properties of soft magnetic crystalline materials.</description><identifier>ISSN: 0735-2727</identifier><identifier>EISSN: 1934-8061</identifier><identifier>DOI: 10.3103/S0735272723080046</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Attenuation coefficients ; Communications Engineering ; Electrons ; Engineering ; Forced vibration ; Frequency ranges ; Frequency response ; Magnetic fields ; Magnetic flux ; Magnetic properties ; Magnetic resonance ; Mechanical properties ; Networks ; Parameters ; Resonant frequencies ; Thickness ; Vibration measurement</subject><ispartof>Radioelectronics and communications systems, 2023, Vol.66 (9), p.478-489</ispartof><rights>Allerton Press, Inc. 2023</rights><rights>Allerton Press, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1136-b7b0b5d8d2d4291e6279ab89344f565aedb05a3b04e4fe7c3af4085dbbafb98a3</cites><orcidid>0000-0002-4378-0866 ; 0000-0001-5366-4896 ; 0000-0002-8522-7620 ; 0000-0002-1776-5339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0735272723080046$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0735272723080046$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Sizhuk, Andrii</creatorcontrib><creatorcontrib>Zhao, Zhenjie</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Sun, Zhuo</creatorcontrib><creatorcontrib>Dong, Guangjiong</creatorcontrib><creatorcontrib>Prokopenko, Oleksandr</creatorcontrib><creatorcontrib>Tretyak, Alina</creatorcontrib><title>Forced Lateral Vibrations of Magnetically Soft Microribbon: Construction of Partial Solutions</title><title>Radioelectronics and communications systems</title><addtitle>Radioelectron.Commun.Syst</addtitle><description>The mathematical description of low-frequency vibrations of the magnetically soft precision microribbon Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 with the fixed one end is proposed in the paper. Resonant frequencies of induced mechanical vibrations of microribbons are found in the given frequency range of 15–80 Hz, for an alternating magnetic field. The attenuation coefficient, measured for the mechanical self-vibration of the annealed sample, is derived. This coefficient measured by laser turns out to be much smaller than the corresponding half-width of the amplitude-frequency characteristic (frequency response) of the described above forced vibrations The theoretical model of forced and free microribbon vibrations with finite thickness and width is proposed. One of the created partial solutions properties is a relatively wide resonance curve, which is confirmed experimentally. The given examples of partial solutions confirm the assumption about the frequency response shape below the maximum frequency at the specified excitation frequency and system parameters. The dependence of the mechanical parameter characterizing the force moment during bending deformation on the applied magnetic field intensity determines the mechanical properties of soft magnetic crystalline materials.</description><subject>Attenuation coefficients</subject><subject>Communications Engineering</subject><subject>Electrons</subject><subject>Engineering</subject><subject>Forced vibration</subject><subject>Frequency ranges</subject><subject>Frequency response</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic properties</subject><subject>Magnetic resonance</subject><subject>Mechanical properties</subject><subject>Networks</subject><subject>Parameters</subject><subject>Resonant frequencies</subject><subject>Thickness</subject><subject>Vibration measurement</subject><issn>0735-2727</issn><issn>1934-8061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rk3-7GmxRbhRaFqjdZkt2kbFk3Ncke-u3NWsGDyBzmML_3ZuYhdEngmhFgN2somKBFKgYlAM-P0IRIxrMScnKMJuM4G-en6CyELYAQUtAJep87X5sGL1U0XnX4rdVexdb1ATuLV2rTm9jWquv2eO1sxKu29s63Wrv-Fs8SFv1Qj_yIPysf22Sydt3w7XGOTqzqgrn46VP0Or9_mT1ky6fF4-xumdWEsDzThQYtmrKhDaeSmJwWUukync-tyIUyjQahmAZuuDVFzZTlUIpGa2W1LBWboquD7867z8GEWG3d4Pu0skrpQCmp5DJR5EClF0LwxlY7334ov68IjByr_qSYNPSgCYntN8b_Ov8v-gIazXS5</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Sizhuk, Andrii</creator><creator>Zhao, Zhenjie</creator><creator>Chen, Xiaohong</creator><creator>Sun, Zhuo</creator><creator>Dong, Guangjiong</creator><creator>Prokopenko, Oleksandr</creator><creator>Tretyak, Alina</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4378-0866</orcidid><orcidid>https://orcid.org/0000-0001-5366-4896</orcidid><orcidid>https://orcid.org/0000-0002-8522-7620</orcidid><orcidid>https://orcid.org/0000-0002-1776-5339</orcidid></search><sort><creationdate>2023</creationdate><title>Forced Lateral Vibrations of Magnetically Soft Microribbon: Construction of Partial Solutions</title><author>Sizhuk, Andrii ; Zhao, Zhenjie ; Chen, Xiaohong ; Sun, Zhuo ; Dong, Guangjiong ; Prokopenko, Oleksandr ; Tretyak, Alina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1136-b7b0b5d8d2d4291e6279ab89344f565aedb05a3b04e4fe7c3af4085dbbafb98a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attenuation coefficients</topic><topic>Communications Engineering</topic><topic>Electrons</topic><topic>Engineering</topic><topic>Forced vibration</topic><topic>Frequency ranges</topic><topic>Frequency response</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic properties</topic><topic>Magnetic resonance</topic><topic>Mechanical properties</topic><topic>Networks</topic><topic>Parameters</topic><topic>Resonant frequencies</topic><topic>Thickness</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sizhuk, Andrii</creatorcontrib><creatorcontrib>Zhao, Zhenjie</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Sun, Zhuo</creatorcontrib><creatorcontrib>Dong, Guangjiong</creatorcontrib><creatorcontrib>Prokopenko, Oleksandr</creatorcontrib><creatorcontrib>Tretyak, Alina</creatorcontrib><collection>CrossRef</collection><jtitle>Radioelectronics and communications systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sizhuk, Andrii</au><au>Zhao, Zhenjie</au><au>Chen, Xiaohong</au><au>Sun, Zhuo</au><au>Dong, Guangjiong</au><au>Prokopenko, Oleksandr</au><au>Tretyak, Alina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced Lateral Vibrations of Magnetically Soft Microribbon: Construction of Partial Solutions</atitle><jtitle>Radioelectronics and communications systems</jtitle><stitle>Radioelectron.Commun.Syst</stitle><date>2023</date><risdate>2023</risdate><volume>66</volume><issue>9</issue><spage>478</spage><epage>489</epage><pages>478-489</pages><issn>0735-2727</issn><eissn>1934-8061</eissn><abstract>The mathematical description of low-frequency vibrations of the magnetically soft precision microribbon Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 with the fixed one end is proposed in the paper. Resonant frequencies of induced mechanical vibrations of microribbons are found in the given frequency range of 15–80 Hz, for an alternating magnetic field. The attenuation coefficient, measured for the mechanical self-vibration of the annealed sample, is derived. This coefficient measured by laser turns out to be much smaller than the corresponding half-width of the amplitude-frequency characteristic (frequency response) of the described above forced vibrations The theoretical model of forced and free microribbon vibrations with finite thickness and width is proposed. One of the created partial solutions properties is a relatively wide resonance curve, which is confirmed experimentally. The given examples of partial solutions confirm the assumption about the frequency response shape below the maximum frequency at the specified excitation frequency and system parameters. The dependence of the mechanical parameter characterizing the force moment during bending deformation on the applied magnetic field intensity determines the mechanical properties of soft magnetic crystalline materials.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0735272723080046</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4378-0866</orcidid><orcidid>https://orcid.org/0000-0001-5366-4896</orcidid><orcidid>https://orcid.org/0000-0002-8522-7620</orcidid><orcidid>https://orcid.org/0000-0002-1776-5339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0735-2727
ispartof Radioelectronics and communications systems, 2023, Vol.66 (9), p.478-489
issn 0735-2727
1934-8061
language eng
recordid cdi_proquest_journals_3100892949
source SpringerNature Journals
subjects Attenuation coefficients
Communications Engineering
Electrons
Engineering
Forced vibration
Frequency ranges
Frequency response
Magnetic fields
Magnetic flux
Magnetic properties
Magnetic resonance
Mechanical properties
Networks
Parameters
Resonant frequencies
Thickness
Vibration measurement
title Forced Lateral Vibrations of Magnetically Soft Microribbon: Construction of Partial Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20Lateral%20Vibrations%20of%20Magnetically%20Soft%20Microribbon:%20Construction%20of%20Partial%20Solutions&rft.jtitle=Radioelectronics%20and%20communications%20systems&rft.au=Sizhuk,%20Andrii&rft.date=2023&rft.volume=66&rft.issue=9&rft.spage=478&rft.epage=489&rft.pages=478-489&rft.issn=0735-2727&rft.eissn=1934-8061&rft_id=info:doi/10.3103/S0735272723080046&rft_dat=%3Cproquest_cross%3E3100892949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100892949&rft_id=info:pmid/&rfr_iscdi=true