Task scheduling using fuzzy logic with best-fit-decreasing for cloud computing environment
An efficient task scheduling is mandatory in cloud computing for providing virtual resources used to carry out the tasks. An effective allocation of VM with the presence of diverse resource requirements, inaccurate information and uncertainties existing in the system is difficult. In this research,...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2024-09, Vol.27 (6), p.7621-7636 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7636 |
---|---|
container_issue | 6 |
container_start_page | 7621 |
container_title | Cluster computing |
container_volume | 27 |
creator | Thapliyal, Nitin Dimri, Priti |
description | An efficient task scheduling is mandatory in cloud computing for providing virtual resources used to carry out the tasks. An effective allocation of VM with the presence of diverse resource requirements, inaccurate information and uncertainties existing in the system is difficult. In this research, an effective task scheduling is done by using the fuzzy logic (FL) with best-fit-decreasing (BFD) in a cloud computing environment. The developed FL–BFD is optimized using resource usage, power, cost and time. Accordingly, the FL–BFD reallocates virtual machine (VM) in the cloud, based on the user demands. Therefore, the adaptability of FL is leveraged to handle uncertainties and imprecise information, which is helpful for an appropriate allocation of VM using BFD according to user requirements. The developed FL–BFD is analyzed using makespan, execution time, degree of imbalance, energy consumption and service level agreements (SLA) violations. The existing approaches named minimum completion time (MCT), particle swarm optimization (PSO), improved wild horse optimization with levy flight algorithm for task scheduling in cloud computing (IWHOLF-TSC), inverted ant colony optimisation (IACO), fuzzy system and modified particle swarm optimization (FMPSO), and task-scheduling using whale optimization (TSWO) are used for comparison. The makespan of FL–BFD with 1000 tasks is 9.2 ms, which is higher when compared to the IWHOLF-TSC and MCT-PSO. |
doi_str_mv | 10.1007/s10586-024-04378-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100672501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100672501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-aa8b2ee92418bd8a1ccfa1c2addadfd772522565ad31cf774967370a05c4ab4a3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyRmA3-iXOTEVVAkSqxlIXFcmynTUnjYseg9ulxCRIby7F1fc651ofQNSW3lBC4C5SIssCE5ZjkHEoMJ2hCBXAMIuen6c7TM5QCztFFCBtCSAWsmqC3pQrvWdBra2LX9qsshqM28XDYZ51btTr7aod1Vtsw4KYdsLHaWzWanM9056LJtNvu4nCc2f6z9a7f2n64RGeN6oK9-j2n6PXxYTmb48XL0_PsfoE1AzJgpcqaWVuxnJa1KRXVuknClDHKNAaACcZEIZThVDcAeVUAB6KI0Lmqc8Wn6Gbs3Xn3EdM_5cZF36eVkic4RSogNLnY6NLeheBtI3e-3Sq_l5TII0M5MpSJofxhKCGF-BgKydyvrP-r_if1DRtjdm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100672501</pqid></control><display><type>article</type><title>Task scheduling using fuzzy logic with best-fit-decreasing for cloud computing environment</title><source>SpringerLink (Online service)</source><creator>Thapliyal, Nitin ; Dimri, Priti</creator><creatorcontrib>Thapliyal, Nitin ; Dimri, Priti</creatorcontrib><description>An efficient task scheduling is mandatory in cloud computing for providing virtual resources used to carry out the tasks. An effective allocation of VM with the presence of diverse resource requirements, inaccurate information and uncertainties existing in the system is difficult. In this research, an effective task scheduling is done by using the fuzzy logic (FL) with best-fit-decreasing (BFD) in a cloud computing environment. The developed FL–BFD is optimized using resource usage, power, cost and time. Accordingly, the FL–BFD reallocates virtual machine (VM) in the cloud, based on the user demands. Therefore, the adaptability of FL is leveraged to handle uncertainties and imprecise information, which is helpful for an appropriate allocation of VM using BFD according to user requirements. The developed FL–BFD is analyzed using makespan, execution time, degree of imbalance, energy consumption and service level agreements (SLA) violations. The existing approaches named minimum completion time (MCT), particle swarm optimization (PSO), improved wild horse optimization with levy flight algorithm for task scheduling in cloud computing (IWHOLF-TSC), inverted ant colony optimisation (IACO), fuzzy system and modified particle swarm optimization (FMPSO), and task-scheduling using whale optimization (TSWO) are used for comparison. The makespan of FL–BFD with 1000 tasks is 9.2 ms, which is higher when compared to the IWHOLF-TSC and MCT-PSO.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04378-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Ant colony optimization ; Cloud computing ; Completion time ; Computer Communication Networks ; Computer Science ; Customer services ; Efficiency ; Energy consumption ; Fuzzy logic ; Integrated approach ; Operating Systems ; Optimization ; Particle swarm optimization ; Pheromones ; Processor Architectures ; Resource management ; Resource scheduling ; Scheduling ; Software services ; Task scheduling ; Uncertainty ; User requirements ; Virtual environments</subject><ispartof>Cluster computing, 2024-09, Vol.27 (6), p.7621-7636</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-aa8b2ee92418bd8a1ccfa1c2addadfd772522565ad31cf774967370a05c4ab4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-024-04378-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10586-024-04378-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Thapliyal, Nitin</creatorcontrib><creatorcontrib>Dimri, Priti</creatorcontrib><title>Task scheduling using fuzzy logic with best-fit-decreasing for cloud computing environment</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>An efficient task scheduling is mandatory in cloud computing for providing virtual resources used to carry out the tasks. An effective allocation of VM with the presence of diverse resource requirements, inaccurate information and uncertainties existing in the system is difficult. In this research, an effective task scheduling is done by using the fuzzy logic (FL) with best-fit-decreasing (BFD) in a cloud computing environment. The developed FL–BFD is optimized using resource usage, power, cost and time. Accordingly, the FL–BFD reallocates virtual machine (VM) in the cloud, based on the user demands. Therefore, the adaptability of FL is leveraged to handle uncertainties and imprecise information, which is helpful for an appropriate allocation of VM using BFD according to user requirements. The developed FL–BFD is analyzed using makespan, execution time, degree of imbalance, energy consumption and service level agreements (SLA) violations. The existing approaches named minimum completion time (MCT), particle swarm optimization (PSO), improved wild horse optimization with levy flight algorithm for task scheduling in cloud computing (IWHOLF-TSC), inverted ant colony optimisation (IACO), fuzzy system and modified particle swarm optimization (FMPSO), and task-scheduling using whale optimization (TSWO) are used for comparison. The makespan of FL–BFD with 1000 tasks is 9.2 ms, which is higher when compared to the IWHOLF-TSC and MCT-PSO.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Cloud computing</subject><subject>Completion time</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Customer services</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Fuzzy logic</subject><subject>Integrated approach</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Pheromones</subject><subject>Processor Architectures</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Software services</subject><subject>Task scheduling</subject><subject>Uncertainty</subject><subject>User requirements</subject><subject>Virtual environments</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyRmA3-iXOTEVVAkSqxlIXFcmynTUnjYseg9ulxCRIby7F1fc651ofQNSW3lBC4C5SIssCE5ZjkHEoMJ2hCBXAMIuen6c7TM5QCztFFCBtCSAWsmqC3pQrvWdBra2LX9qsshqM28XDYZ51btTr7aod1Vtsw4KYdsLHaWzWanM9056LJtNvu4nCc2f6z9a7f2n64RGeN6oK9-j2n6PXxYTmb48XL0_PsfoE1AzJgpcqaWVuxnJa1KRXVuknClDHKNAaACcZEIZThVDcAeVUAB6KI0Lmqc8Wn6Gbs3Xn3EdM_5cZF36eVkic4RSogNLnY6NLeheBtI3e-3Sq_l5TII0M5MpSJofxhKCGF-BgKydyvrP-r_if1DRtjdm0</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Thapliyal, Nitin</creator><creator>Dimri, Priti</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>Task scheduling using fuzzy logic with best-fit-decreasing for cloud computing environment</title><author>Thapliyal, Nitin ; Dimri, Priti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-aa8b2ee92418bd8a1ccfa1c2addadfd772522565ad31cf774967370a05c4ab4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Cloud computing</topic><topic>Completion time</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Customer services</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Fuzzy logic</topic><topic>Integrated approach</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Pheromones</topic><topic>Processor Architectures</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Software services</topic><topic>Task scheduling</topic><topic>Uncertainty</topic><topic>User requirements</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thapliyal, Nitin</creatorcontrib><creatorcontrib>Dimri, Priti</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thapliyal, Nitin</au><au>Dimri, Priti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task scheduling using fuzzy logic with best-fit-decreasing for cloud computing environment</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>27</volume><issue>6</issue><spage>7621</spage><epage>7636</epage><pages>7621-7636</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>An efficient task scheduling is mandatory in cloud computing for providing virtual resources used to carry out the tasks. An effective allocation of VM with the presence of diverse resource requirements, inaccurate information and uncertainties existing in the system is difficult. In this research, an effective task scheduling is done by using the fuzzy logic (FL) with best-fit-decreasing (BFD) in a cloud computing environment. The developed FL–BFD is optimized using resource usage, power, cost and time. Accordingly, the FL–BFD reallocates virtual machine (VM) in the cloud, based on the user demands. Therefore, the adaptability of FL is leveraged to handle uncertainties and imprecise information, which is helpful for an appropriate allocation of VM using BFD according to user requirements. The developed FL–BFD is analyzed using makespan, execution time, degree of imbalance, energy consumption and service level agreements (SLA) violations. The existing approaches named minimum completion time (MCT), particle swarm optimization (PSO), improved wild horse optimization with levy flight algorithm for task scheduling in cloud computing (IWHOLF-TSC), inverted ant colony optimisation (IACO), fuzzy system and modified particle swarm optimization (FMPSO), and task-scheduling using whale optimization (TSWO) are used for comparison. The makespan of FL–BFD with 1000 tasks is 9.2 ms, which is higher when compared to the IWHOLF-TSC and MCT-PSO.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04378-7</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2024-09, Vol.27 (6), p.7621-7636 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_3100672501 |
source | SpringerLink (Online service) |
subjects | Algorithms Ant colony optimization Cloud computing Completion time Computer Communication Networks Computer Science Customer services Efficiency Energy consumption Fuzzy logic Integrated approach Operating Systems Optimization Particle swarm optimization Pheromones Processor Architectures Resource management Resource scheduling Scheduling Software services Task scheduling Uncertainty User requirements Virtual environments |
title | Task scheduling using fuzzy logic with best-fit-decreasing for cloud computing environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20scheduling%20using%20fuzzy%20logic%20with%20best-fit-decreasing%20for%20cloud%20computing%20environment&rft.jtitle=Cluster%20computing&rft.au=Thapliyal,%20Nitin&rft.date=2024-09-01&rft.volume=27&rft.issue=6&rft.spage=7621&rft.epage=7636&rft.pages=7621-7636&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04378-7&rft_dat=%3Cproquest_cross%3E3100672501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100672501&rft_id=info:pmid/&rfr_iscdi=true |